首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用激光熔覆工艺在45钢表面对Fe60Nb20Ti20非晶合金粉末进行不同工艺参数熔覆试验,获得无裂纹且呈冶金结合的涂层。利用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机对涂层的微观形貌、组成相、显微硬度和摩擦磨损性能进行分析。结果表明,涂层组织为细小的α-Fe过饱和固溶体等轴晶和少量的非晶相。涂层平均硬度为857HV,为基体材料的4倍,耐磨性也明显优于基体材料。  相似文献   

2.
钛合金表面宽带激光熔覆梯度生物陶瓷复合涂层   总被引:9,自引:0,他引:9  
为了减少激光熔覆过程中基材与生物陶瓷涂层之间的热应力,设计了一种梯度生物陶瓷复合涂层并采用宽带激光熔覆技术在Ti-6Al-4V合金上制备了梯度生物陶瓷复合涂层,对其组织和显微硬度进行了研究。结果表明:钙和氧元素主要分布在生物陶瓷涂层中;钛和钒元素主要分布在基材和合金化层内;磷元素分布在合金层与陶瓷层中。合金层中基底组织上分布着白色共晶组织和白色颗粒,基底组织主要为Ti(Al、P、Fe、V)相,白色共晶组织主要为Fe2Ti4O AlV3,白色颗粒为结晶析出的Al3V0.333 Ti0.666;生物陶瓷层中的基底组织为胞状晶,其上分布有灰色相和白色颗粒相,胞状晶主要为CaO、CaTiO3和HA,灰色相为β-TCP及Ca2Ti2O6,白色颗粒相为TiO2。合金层的最高硬度为1600Hv0.2,生物陶瓷涂层显微硬度最大值约为1300Hv0.2。  相似文献   

3.
用激光熔覆工艺在40Cr钢表面制备CoCrFeNiTix (x=0、0.2、0.5、0.8)高熵合金涂层并计算其热力学参数,使用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、显微硬度仪、摩擦磨损试验机等手段检测合金的物相组成、组织、元素分布、硬度及耐磨性,研究了Ti元素含量对其显微组织和耐磨性能的影响。结果表明:随着Ti元素含量的提高,合金物相在面心立方(FCC)结构的基础上形成了体心立方(BCC)结构,熔覆层中部的组织由晶界明显、晶粒分布均匀的等轴晶组成,最后形成了柱状树枝晶;随着Ti元素含量的提高,合金横截面的硬度逐渐提高,最高为412.32 HV0.2,比基体的硬度提高了1.8倍;涂层的磨损量和摩擦系数均随之降低,Ti含量为0.8时涂层其耐磨性能最优,磨损量最小为6.8 mg,摩擦系数为0.35。涂层的磨损机制,以磨粒磨损、粘着磨损和氧化磨损为主。  相似文献   

4.
为了使激光熔覆镍基耐磨涂层得到更广泛的应用,通过激光熔覆技术在1Cr18Ni9Ti不锈钢表面制备了NiCrBSi/WC-Co镍基涂层,研究了WC-Co添加量对涂层微观结构及摩擦学性能的影响。结果表明:随WC-Co添加量的增加,镍基涂层的结构由枝晶和枝晶间的共晶逐渐向球状晶和块状晶转变,涂层的硬度和耐磨性增加。  相似文献   

5.
通过大功率半导体耦合激光器在车用316L不锈钢上激光熔覆Co-9Al-12W合金,通过硬度与稀释率确定了最优的激光熔覆工艺参数,实验测试分析钴基涂层的微观组织及腐蚀性能。研究结果表明:增大激光能量密度能提高基材熔融程度,达到更大的稀释率。能量密度120 J/mm~2熔覆合金形成的熔覆合金达到了最大的硬度59 6HV。位于基体和熔覆合金界面层区域形成了具有平面晶特征的金相组织,涂层和基材之间达到了冶金结合的状态。在钴基熔覆合金内存在γ-Co与Al_3W_2两种成分,Co与Fe主要出现在枝晶组织中。结果显示涂层和基材之间达到了冶金结合的程度,获得质量更优的熔覆合金。Al含量增大便会跟氧气发生相互作用得到Al_2O_3膜层,形成致密结构,达到钝化效果。  相似文献   

6.
采用横流CO2激光器在TC4合金表面熔覆Ni基合金涂层,对激光熔覆层的微观组织、析出相、各合金元素在γ-Ni和M23C6相中含量变化进行了研究.结果表明,熔覆层可分为三个区:熔覆区、结合区和基体热影响区.熔覆区由γ-Ni,TiB2,TiC,M23C6和Ni3B相组成,其中,TiB2,TiC和M23C6细小颗粒均匀分布于γ-Ni初晶上,共晶组织由γ-Ni和Ni3B组成.为揭示TC4合金表面激光熔覆Ni基合金涂层在3500~500K温度范围的相组成及组织变化规律,利用Thermo-Calc软件及相应Ni基合金数据库对TC4合金表面激光熔覆Ni基合金涂层凝固过程中各析出相进行了热力学计算分析,研究了熔覆层中γ-Ni,TiB2,TiC,M23C6和Ni3B各相相对含量和B,C,Cr,Fe,Ni,Ti元素在γ-Ni和M23C6相中的含量随温度变化关系,为TC4合金表面激光熔覆Ni基合金涂层成分设计和工艺优化提供理论依据.  相似文献   

7.
为了探究激光熔覆对高速车轮钢合金涂层摩擦与磨损性能的影响,利用LDM2500-60型半导体全固态激光器在高速车轮钢表面激光熔覆制备Fe基合金涂层。分别采用金相显微镜、能量色散X射线光谱仪、X射线衍射仪(XRD)分析了熔覆涂层的组织结构、元素分布以及物相,利用MM-2000高速摩擦试验机研究了高速车轮材料激光熔覆处理前后轮轨材料的摩擦磨损性能。结果表明:激光熔覆处理能有效改善车轮材料的抗磨损性能,熔覆涂层主要由γ-Fe、Cr7C3碳化物以及含铁固溶体等物相组成,涂层组织主要以树枝晶和共晶为主;车轮合金涂层的磨损速率相比基体材料降低了51%左右,车轮熔覆铁基合金后的轮轨磨损机制主要表现为轻微的磨粒磨损和氧化磨损。  相似文献   

8.
张维平  马玉涛  刘硕 《材料保护》2005,38(2):4-6,10
利用多道搭接激光熔覆技术,在45钢表面制备出原位自生TiB2颗粒增强Ni基金属陶瓷复合涂层,可以实现金属基体的高韧性与陶瓷材料优异性能的良好结合,改善材料表面性能.采用XRD,SEM对涂层的组织结构进行了研究.结果表明:多道搭接涂层主要由γ -(Ni, Fe)粘接金属基体和以TiB2为主的原位析出硬质颗粒组成.B, Ti, Ni, Fe元素在涂层中基本呈均匀分布,涂层最表面Ti稍有富集.涂层组织是由γ -(Ni, Fe)先共晶奥氏体枝晶及晶间TiB2/γ -(Ni, Fe)共晶组成.熔覆搭接区以马氏体相变方式冶金结合.熔覆层与基体及各道熔覆层之间界面结合良好.  相似文献   

9.
U-Nb合金具有良好的耐腐蚀性、结构稳定性和加工性,是核领域重要的结构材料。制备了不同Nb元素含量的淬火态U-Nb合金,对其显微组织和比热容进行了研究。结果表明:淬火态U-2Nb合金中存在大量粗针状马氏体;随着Nb元素含量的增加,马氏体逐渐消失,U-Nb合金形成等轴晶组织;随着Nb元素含量增加和温度的升高,U-Nb合金的比热容逐渐增大;当温度超过650℃时,U-Nb合金发生了相变,比热容显著减小。  相似文献   

10.
45钢表面激光熔覆NiCrBSi涂层的组织和摩擦磨损性能   总被引:3,自引:1,他引:3  
孙荣禄  杨贤金 《材料工程》2005,(8):20-23,27
采用激光熔覆技术在45钢表面制备NiCrBSi合金涂层,利用EPMA,SEM和TEM分析了激光熔覆层的微观组织,测试了激光熔覆层在不同环境气氛压力下的摩擦磨损性能.结果表明:激光熔覆层由熔覆区(CZ)、结合区(BZ)和基底热影响区(HAZ)三个区域组成.熔覆区的组织是在γ-Ni树枝晶和γ-Ni Ni3B共晶的基体上分布着细小的CrB颗粒和Cr7C3树枝晶,结合区是基底材料和熔覆材料的混熔区,呈定向凝固特征,基底热影响区为针状马氏体组织.激光熔覆层的摩擦磨损性能与环境气氛压力密切相关,随环境气氛压力的降低,摩擦系数增大,磨损量减少.  相似文献   

11.
钛合金表面激光熔覆TiC/NiCrBSi涂层温度场有限元模拟   总被引:1,自引:0,他引:1  
为在钛合金表面获得优质激光熔覆涂层,用有限元方法研究了激光熔覆工艺对熔池温度场分布和凝固后熔覆层组织的影响,考虑相变潜热、辐射对流散热以及温度对热物理性能的影响等因素,建立三维有限元模型模拟了Ti6Al4V合金表面激光熔覆TiC/NiCrBSi复合涂层过程中的温度场,并结合熔覆过程的温度场分布,对涂层的形貌、结合区、基...  相似文献   

12.
硅钢表面激光熔覆高硅涂层对性能的影响   总被引:2,自引:0,他引:2  
用Nd:YAG脉冲激光在低硅钢表面制备激光熔覆高硅涂层,研究了激光熔覆高硅涂层样品的组织和磁性能.结果表明,制备出的激光熔覆高硅涂层组织致密、无气孔和裂纹,且与基体有良好的冶金结合.经激光熔覆后硅钢表面存在熔覆区、界面结合区和热影响区.熔覆区的显微组织不均匀,随着与结合界面距离的增加,由柱状晶变为树枝晶,最终过渡到表层的细小树枝晶组织.熔覆层与基体之间的结合界面为平面晶组织,热影响区为马氏体组织.熔覆涂层的显微硬度远高于低硅钢基体,其主要原因是涂层具有较高的Si含量,涂层中的α-Fe和γ-Fe双相组织也导致了硬度的提高.激光熔覆高硅涂层硅钢样品经扩散退火后具有室温铁磁性,Si含量的提高使其室温直流磁性能优于原始低硅钢.  相似文献   

13.
为了研究激光熔覆镍基合金涂层显微组织与性能之间的关系,本文选用Ni25、Ni45、Ni60镍基自熔性合金粉末作为熔覆材料,在同一工艺参数下在45#钢基体上制得Ni25、Ni45、Ni60合金激光熔覆涂层。利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计等方法对涂层的显微组织、物相组成、显微硬度等进行了研究。结果表明从Ni25到Ni60合金涂层,随着合金元素含量的提高,涂层微观组织逐渐由亚共晶转变为过共晶,γ-Ni奥氏体枝晶所占体积分数减少,尺寸细化,枝晶间的共晶组织和硬质相所占的体积分数增大,涂层和基体之间结合带的宽度越来越窄,熔覆层的显微硬度越来越高。Ni25、Ni45合金涂层的平均显微硬度分别为250HV和550HV左右,而Ni60合金涂层的平均硬度却高达750HV左右,为Ni25合金涂层的3倍。  相似文献   

14.
为了获得高性能的涂层材料,采用激光熔覆技术,在W_6Mo_5Cr_4V_2AlA工具钢表面制备MoFeCrTiWAlNb_x(x=1,1.5,2,2.5,3)高熔点高熵合金涂层。利用X射线衍射仪(XRD)、扫描电镜(SEM)、硬度计和摩擦磨损试验机等测试手段,研究了Nb对激光熔覆MoFeCrTiWAlNb_x高熵合金涂层组织与性能的影响。结果表明,涂层主要由BCC相、MC相和少量拉弗斯相组成,包括先共晶组织和共晶组织。随着Nb含量的增加,先共晶碳化物数量减少、尺寸增加,呈现不规则颗粒状变化。共晶组织的体积分数逐渐增大,共晶组织中BCC相逐渐增多而(MC)_e相逐渐减少,共晶组织形貌也逐渐由不规则块状小颗粒+棒状枝晶变为大块状颗粒+网状枝晶;涂层硬度逐渐下降,耐磨性逐渐上升,涂层磨损机理以粘着磨损、磨粒磨损为主。  相似文献   

15.
激光熔覆能够实现对能量和品质的精确控制,对基体的热影响小,涂层稀释率低,并与基体形成冶金结合,是目前制备涂层的常用手段。相比于块体材料,涂层的应用减少了材料的浪费,更符合环保理念。采用激光熔覆技术制备高熵合金涂层是近年来高熵合金领域的主要热点之一。由于高熵合金的"鸡尾酒效应",主元元素的选择对涂层性能起着决定性的作用。因此本文主要介绍激光熔覆制备高熵合金涂层时合金元素主元对其相形成规律以及耐磨、耐腐蚀、抗氧化等性能的影响。重点介绍了高熵合金中常用主元元素Fe、Cr、Mn、Al、Ti、Co、Ni几种金属主元和C、N、B、Si四种非金属主元的影响规律,结果表明,通过宏观和微观的合金化可以改变高熵合金相的组成及结构,从而改善材料的性能。最后还对激光熔覆高熵合金涂层的应用前景以及未来研究的方向进行了展望。  相似文献   

16.
激光熔覆技术采用高能量密度的激光作为工艺的能量来源,能够对工件表面进行改性和修复,显著地改善了基体的表面力学性能,从而有效地延长了产品的生命周期。激光熔覆是制备高熵合金的典型工艺之一,采用该技术并且添加合适的合金元素可以制备具备卓越性能的高熵合金涂层。为清晰地阐明加入元素后增强激光熔覆高熵合金涂层硬度的作用机制,首先综述了目前国内外在激光熔覆过程中加入常见元素所制备的高熵合金涂层硬度性能的研究现状,其中高熵合金有特殊的“4种效应”,对金属间化合物有促进作用,其内部微观结构一般为FCC、BCC或者HCP等固溶相,通常通过固溶强化、沉淀强化和分散强化来强化,并且激光熔覆法会使高熵合金涂层快速冷却,从而显著改善合金的力学性能。其次,分析了金属与非金属两大类元素对激光熔覆制备高熵合金涂层硬度强化的机理,总结了金属元素与非金属元素的添加对高熵合金涂层硬度的影响规律。最后,针对激光熔覆制备高熵合金涂层硬度性能的改进,总结出了有效的方法,并对其未来发展进行了展望。研究结果揭示了激光熔覆高熵合金涂层硬度强化的理论基础,为该领域的进一步发展提供了理论依据。  相似文献   

17.
目的 针对激光熔覆制备IN625高温合金涂层时易产生缺陷和元素偏析进而导致合金性能下降的问题,提高增材制造IN 625高温合金的力学性能。方法 在激光熔覆IN 625涂层的过程中施加超声振动辅助,通过物相检测和微观组织观测研究超声功率对涂层物相种类和晶体尺寸的影响;通过分析析出相含量、分布方式及析出形态,研究超声功率对元素偏析的影响;通过对显微硬度、高温耐磨性进行测试,研究超声功率对涂层力学性能的影响。结果 施加超声前的涂层组织主要为方向杂乱的粗大枝晶,施加超声后的涂层物相组成未发生明显变化,但枝晶内亚晶排列紧密且尺寸明显减小;施加超声振动后的涂层析出相尺寸减小、含量下降,其中Laves相含量在施加超声后降幅较大,表明超声振动可以抑制Nb、Mo等元素的偏析;施加超声振动后涂层的显微硬度提高,磨损率明显下降,磨损机制由原来的表面疲劳磨损、黏着磨损和磨粒磨损的复杂磨损转变为磨粒磨损、黏着磨损的简单磨损。结论 施加超声辅助可以有效细化IN 625涂层组织,并抑制Laves相的析出,提高涂层的硬度和耐磨性。  相似文献   

18.
为了满足不同的工况,许多工程部件需具备良好的表面性能,例如:较高的硬度、良好的耐磨性能和耐腐蚀性能等。可以通过在普通材料表面熔覆合金粉末来达到改善表面性能的效果。激光熔覆制备的涂层具有优良的附着力、良好的微观结构、较小的热影响区和优异的力学性能等特点。常用的激光熔覆方法主要包括预置法和同步送粉法。常用的熔覆材料主要分为三个体系,即:Fe基、Co基和Ni基。Fe基粉末制备的涂层具有较高的硬度和较好的耐磨性,并且价格较为便宜。但是,Fe基涂层在制备过程中容易出现较多的缺陷,从而导致涂层的性能和可靠性下降。Co基涂层具有良好的耐高温性和耐腐蚀性,但是力学性能较差,价格极为昂贵,不适用于大范围的工业生产。Ni基涂层具有较好的耐磨性能、良好的韧性和较好的润湿性能,价格较为经济,有广阔的应用前景。近年来,许多研究人员专注于Ni基涂层强化的研究。目前,常用的Ni基涂层的强化方法主要包括调整激光熔覆的工艺参数和向Ni基涂层中加入硬质相或适当的元素来改善涂层的性能。很多研究人员专注于改善Ni基合金粉末的成分,即向Ni基粉末中加入硬质相或者合适的元素来提高Ni基涂层的性能。向Ni基涂层中加入的主要硬质相颗粒包括WC、NbC、TiC、TaC和VC等。一些研究人员通过加入化合物合成元素,在激光熔覆的过程中通过原位反应的方法来生成一些碳化物强化相。比如:通过加入纯Nb粉或Nb2O5与石墨粉原位生成NbC;加入纯Ti粉和石墨粉原位反应生成TiC。一些研究人员通过添加某单一元素来提高涂层的性能,如:Nb、Ti、Al、Ta等。此外,还有一些学者研究了稀土元素对涂层性能的影响。激光熔覆方法制备的Ni基合金涂层具有较高的结合强度、较好的耐腐蚀性和优异的耐磨性,在工程上具有广阔的应用前景。改进合金粉末的成分,可以进一步提高涂层的力学性能。本文综述了硬质颗粒增强镍基合金复合涂层的研究进展,指出了硬质颗粒增强镍基合金涂层需进一步解决的问题,并展望了其应用前景。  相似文献   

19.
为提高316L不锈钢耐高温液态铅铋的腐蚀能力,通过使用同轴送粉的激光熔覆方式,在316L不锈钢表面制备一层Stellite6合金涂层,将其放入400℃的高温液态铅铋中进行500 h高速流腐蚀试验,其中相对流速设置为2.56 m/s.分析涂层的微观组织、物相组成、元素分布、显微硬度值等的变化规律,以及该涂层耐液态铅铋的腐蚀性能.涂层组织由等轴晶、树枝晶、胞状晶及平面晶组成,搭接区晶粒沿不同方向长大;涂层主要有γ-Co、CoCx、(Cr,Fe)7 C3及M23 C6等物相;各组分元素在涂层表面均匀分布,Co、Cr与Fe等元素在基体316L与涂层之间发生明显扩散;Stellite6涂层的硬度平均值为基体材料316L的2.3倍,且最高达到556.8HV.在进行高温液态铅铋高速流腐蚀后,316L不锈钢表面生成了大面积且连续的氧化物,存在大量微型腐蚀坑,Stellite6涂层表面仅存在少量氧化物,未发现明显的腐蚀坑,较好地维持了原貌;Stellite6涂层表面粗糙度值为1.0μm,而316L经腐蚀后的表面粗糙度为2.4μm.Stellite6合金涂层能够有效地提高316L不锈钢基体在高温液态铅铋合金中的耐腐蚀性能.  相似文献   

20.
为探究CoCrNi中熵合金在激光熔覆领域中的应用,以CoCrNi合金粉末作为熔覆粉末,在45钢表面采用同轴送粉法制备合金涂层。利用扫描电镜、X射线衍射仪、显微硬度仪、摩擦磨损实验机和电化学工作站等设备研究了熔覆层微观组织、硬度、耐磨性和耐腐蚀性能。结果表明:熔覆层成形良好,组织均匀致密,组成相主要为FCC单相固溶体;熔池与基体交界处为平面晶,底部靠近中心为柱状晶,顶部分别为胞状晶和等轴晶,3种元素在熔覆层深度方向上的比例几乎相同;熔覆层平均硬度为250HV,摩擦系数、磨损量较基体分别降低了11.7%和36.7%;自腐蚀电流密度略有降低,CoCrNi熔覆层的钝化区域为-150到1 100 mV,表明熔覆层显著提高45钢的耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号