首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(thiophene) as a kind of n‐doped conjugated polymer with reversible redox behavior can be employed as anode material for lithium‐ion batteries (LIBs). However, the low redox activity and poor rate performance for the poly(thiophene)‐based anodes limit its further development. Herein, a structure‐design strategy is reported for thiophene‐containing conjugated microporous polymers (CMPs) with extraordinary electrochemical performance as anode materials in LIBs. The comparative study on the electrochemical performance of the structure‐designed thiophene‐containing CMPs reveals that high redox‐active thiophene content, highly crosslinked porous structure, and improved surface area play significant roles for enhancing electrochemical performances of the resulting CMPs. The all‐thiophene‐based polymer of poly(3,3′‐bithiophene) with crosslinked structure and a high surface area of 696 m2 g?1 exhibits a discharge capacity of as high as 1215 mAh g?1 at 45 mA g?1, excellent rate capability, and outstanding cycling stability with a capacity retention of 663 mAh g?1 at 500 mA g?1 after 1000 cycles. The structure–performance relationships revealed in this work offer a fundamental understanding in the rational design of CMPs anode materials for high performance LIBs.  相似文献   

2.
To tackle the issue of inferior cycle stability and rate capability for MnO anode materials in lithium ion batteries, a facile strategy is explored to prepare a hybrid material consisting of MnO nanocrystals grown on conductive graphene nanosheets. The prepared MnO/graphene hybrid anode exhibits a reversible capacity as high as 2014.1 mAh g?1 after 150 discharge/charge cycles at 200 mA g?1, excellent rate capability (625.8 mAh g?1 at 3000 mA g?1), and superior cyclability (843.3 mAh g?1 even after 400 discharge/charge cycles at 2000 mA g?1 with only 0.01% capacity loss per cycle). The results suggest that the reconstruction of the MnO/graphene electrodes is intrinsic due to conversion reactions. A long‐term stable nanoarchitecture of graphene‐supported ultrafine manganese oxide nanoparticles is formed upon cycling, which yields a long‐life anode material for lithium ion batteries. The lithiation and delithiation behavior suggests that the further oxidation of Mn(II ) to Mn(IV ) and the interfacial lithium storage upon cycling contribute to the enhanced specific capacity. The excellent rate capability benefits from the presence of conductive graphene and a short transportation length for both lithium ions and electrons. Moreover, the as‐formed hybrid nanostructure of MnO on graphene may help achieve faster kinetics of conversion reactions.  相似文献   

3.
Binders have been reported to play a key role in improving the cycle performance of Si anode materials of lithium‐ion batteries. In this study, the biopolymer guar gum (GG) is applied as the binder for a silicon nano­particle (SiNP) anode of a lithium‐ion battery for the first time. Due to the large number of polar hydroxyl groups in the GG molecule, a robust interaction between the GG binder and the SiNPs is achieved, resulting in a stable Si anode during cycling. More specifically, the GG binder can effectively transfer lithium ions to the Si surface, similarly to polyethylene oxide solid electrolytes. When GG is used as a binder, the SiNP anode can deliver an initial discharge capacity as high as 3364 mAh g?1, with a Coulombic efficiency of 88.3% at the current density of 2100 mA g?1, and maintain a capacity of 1561 mAh g?1 after 300 cycles. The study shows that the electrochemical performance of the SiNP anode with GG binder is significantly improved compared to that of a SiNP anode with a sodium alginate binder, and it demonstrates that GG is a promising binder for Si anodes of lithium‐ion batteries.  相似文献   

4.
Seeking high‐capacity, high‐rate, and durable anode materials for lithium‐ion batteries (LIBs) has been a crucial aspect to promote the use of electric vehicles and other portable electronics. Here, a novel alloy‐forming approach to convert amorphous Si (a‐Si)‐coated copper oxide (CuO) core–shell nanowires (NWs) into hollow and highly interconnected Si–Cu alloy (mixture) nanotubes is reported. Upon a simple H2 annealing, the CuO cores are reduced and diffused out to alloy with the a‐Si shell, producing highly interconnected hollow Si–Cu alloy nanotubes, which can serve as high‐capacity and self‐conductive anode structures with robust mechanical support. A high specific capacity of 1010 mAh g?1 (or 780 mAh g?1) has been achieved after 1000 cycles at 3.4 A g?1 (or 20 A g?1), with a capacity retention rate of ≈84% (≈88%), without the use of any binder or conductive agent. Remarkably, they can survive an extremely fast charging rate at 70 A g?1 for 35 runs (corresponding to one full cycle in 30 s) and recover 88% capacity. This novel alloy‐nanotube structure could represent an ideal candidate to fulfill the true potential of Si‐loaded LIB applications.  相似文献   

5.
The dramatically increasing demand of high‐energy lithium‐ion batteries (LIBs) urgently requires advanced substitution for graphite‐based anodes. Herein, inspired from the extra capacity of lithium storage in solid‐electrolyte interface (SEI) films, layered hydroxide cobalt acetates (LHCA, Co(Ac)0.48(OH)1.52·0.55H2O) are introduced as novel and high‐efficiency anode materials. Furthermore, ultrathin LHCA nanoplates are face‐to‐face anchored on the surface of graphene nanosheets (GNS) through a facile solvothermal method to improve the electronic transport and avoid agglomeration during repeated cycles. Profiting from the parallel structure, LHCA//GNS nanosheets exhibit extraordinary long‐term and high‐rate performance. At the current densities of 1000 and 4000 mA g?1, the reversible capacities maintain ≈1050 mAh g?1 after 200 cycles and ≈780 mAh g?1 after 300 cycles, respectively, much higher than the theoretical value of LHCA according to the conversion mechanism. Fourier transform infrared spectroscopy confirms the conversion from acetate to acetaldehyde after lithiation. A reasonable mechanism is proposed to elucidate the lithium storage behaviors referring to the electrocatalytic conversion of OH groups with Co nanocatalysts. This work can help further understand the contribution of SEI components (especially LiOH and LiAc) to lithium storage. It is envisaged that layered transition metal hydroxides can be used as advanced materials for energy storage devices.  相似文献   

6.
Although abundant germanium (Ge)‐based anode materials have been explored to obtain high specific capacity, high rate performance, and long charge/discharge lifespans for lithium‐ion batteries (LIBs), their performances are still far from satisfactory due to the intrinsic defects of Ge and the relatively intricate anode structure. To work out these issues, a 3D ordered porous N‐doped carbon framework with Ge quantum dots uniformly embedded (3DOP Ge@N? C) as a binder‐free anode for LIBs via a facile polystyrene colloidal nanospheres template‐confined strategy is proposed. This unique structure not only facilitates Li‐ion diffusion and electron transport that can guarantee rapid de/alloying reaction, but also alleviates the huge volume changes during reactions and improves cycling stability. Notably, the resulting anode delivers a high specific reversible capacity (≈1160 mA h g?1 at 1 A g?1), superior rate properties (exceeding 500 mA h g?1 at 40 A g?1), and excellent cycling stability (over 90% capacity retention after 1200 cycles even at 5 A g?1). Furthermore, both the 3DOP Ge@N? C anode with high areal mass loading (up to 8 mg cm?2) and the full cell coupled with LiFePO4 cathode display high capacity and cycling stability, further indicative of the favorable real‐life application prospects for high‐energy LIBs.  相似文献   

7.
Tin oxide‐based materials attract increasing attention as anodes in lithium‐ion batteries due to their high theoretical capacity, low cost, and high abundance. Composites of such materials with a carbonaceous matrix such as graphene are particularly promising, as they can overcome the limitations of the individual materials. The fabrication of antimony‐doped tin oxide (ATO)/graphene hybrid nanocomposites is described with high reversible capacity and superior rate performance using a microwave assisted in situ synthesis in tert‐butyl alcohol. This reaction enables the growth of ultrasmall ATO nanoparticles with sizes below 3 nm on the surface of graphene, providing a composite anode material with a high electric conductivity and high structural stability. Antimony doping results in greatly increased lithium insertion rates of this conversion‐type anode and an improved cycling stability, presumably due to the increased electrical conductivity. The uniform composites feature gravimetric capacity of 1226 mAh g?1 at the charging rate 1C and still a high capacity of 577 mAh g?1 at very high charging rates of up to 60C, as compared to 93 mAh g?1 at 60C for the undoped composite synthesized in a similar way. At the same time, the antimony‐doped anodes demonstrate excellent stability with a capacity retention of 77% after 1000 cycles.  相似文献   

8.
Metal oxide‐based nanomaterials are widely studied because of their high‐energy densities as anode materials in lithium‐ion batteries. However, the fast capacity degradation resulting from the large volume expansion upon lithiation hinders their practical application. In this work, the preparation of walnut‐like multicore–shell MnO encapsulated nitrogen‐rich carbon nanocapsules (MnO@NC) is reported via a facile and eco‐friendly process for long‐cycling Li‐ion batteries. In this hybrid structure, MnO nanoparticles are uniformly dispersed inside carbon nanoshells, which can simultaneously act as a conductive framework and also a protective buffer layer to restrain the volume variation. The MnO@NC nanocapsules show remarkable electrochemical performances for lithium‐ion batteries, exhibiting high reversible capability (762 mAh g?1 at 100 mA g?1) and stable cycling life (624 mAh g?1 after 1000 cycles at 1000 mA g?1). In addition, the soft‐packed full batteries based on MnO@NC nanocapsules anodes and commercial LiFePO4 cathodes present good flexibility and cycling stability.  相似文献   

9.
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (?2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g?1 at 20 mA g?1, fast rate capability of 103 mAh g?1 at 100 mA g?1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.  相似文献   

10.
Na‐ion Batteries have been considered as promising alternatives to Li‐ion batteries due to the natural abundance of sodium resources. Searching for high‐performance anode materials currently becomes a hot topic and also a great challenge for developing Na‐ion batteries. In this work, a novel hybrid anode is synthesized consisting of ultrafine, few‐layered SnS2 anchored on few‐layered reduced graphene oxide (rGO) by a facile solvothermal route. The SnS2/rGO hybrid exhibits a high capacity, ultralong cycle life, and superior rate capability. The hybrid can deliver a high charge capacity of 649 mAh g?1 at 100 mA g?1. At 800 mA g?1 (1.8 C), it can yield an initial charge capacity of 469 mAh g?1, which can be maintained at 89% and 61%, respectively, after 400 and 1000 cycles. The hybrid can also sustain a current density up to 12.8 A g?1 (≈28 C) where the charge process can be completed in only 1.3 min while still delivering a charge capacity of 337 mAh g?1. The fast and stable Na‐storage ability of SnS2/rGO makes it a promising anode for Na‐ion batteries.  相似文献   

11.
GaN is demonstrated to be an ideal anode for Li‐ion batteries (LIBs) for the first time. Amorphous GaN@Cu nanorods (a‐GaN@Cu) freestanding electrode is designed via a low‐temperature pulsed laser deposition method, which exhibits prominent rate capability and untralong lifespan as an anode for LIBs. With porous interconnected metal nanorods substrate to improve the structure integrity and electronic conductivity, the a‐GaN@Cu electrode delivers a capacity recovery of 980 mAh g?1 after 150 cycles from 0.25 to 6.25 A g?1 and a high discharge capacity of 509 mAh g?1 after 3000 cycles at 10.0 A g?1. The lithium storage in the a‐GaN is also systematically studied, which suggests a redox reaction mechanism.  相似文献   

12.
High‐capacity lithium‐ion battery anode materials, such as transition metal oxides, Sn and Si, suffer from large volume expansion during lithiation, which causes capacity decay. Introducing sufficient void space to accommodate the volume change is essential to achieve prolonged cycling stability. However, excessive void space may significantly compromise the volumetric energy density. Herein, a method to control the void size in iron oxide@carbon (FeOx@C) yolk–shell structures is developed and the relationship between the void space and electrochemical performance is demonstrated. With an optimized void size, the FeOx@C yolk–shell structure exhibits the best cycling performance. A high reversible capacity of ≈810 mA h g?1 is obtained at 0.2 C, maintaining 790 mA h g?1 after 100 cycles. This contrasts with FeOx@C materials having either smaller or larger void sizes, in which significant capacity fading is observed during cycling. This contribution provides an effective approach to alleviate the volume expansion problem, which can be generally applied to other anode materials to improve their performance in LIBs.  相似文献   

13.
Exfoliating graphite to graphene has attracted great attention due to the fantastic properties of graphene available for designing graphene‐based materials or devices. Besides the classic solution method, herein a unique role of TiO2 in exfoliating graphite to be graphene layers effectively is reported. As a paradigm, this discovered effect of TiO2 is significant for preparing high‐performance graphene‐modified SiOx‐based anode in lithium‐ion batteries (LIBs), in which the graphite is in situ exfoliated mechanically by TiO2 to be multilayered graphene (i.e., MLG) and then the SiOx is wrapped by the MLG to construct a SiOx/TiO2@MLG. In this case, an extremely high capacity of 1484 mAh g?1, long lifespan over 1200 cycles at 2 A g?1, as well as good performance in full LIBs (vs nickel‐rich cathode) are demonstrated. It is confirmed that the MLG can enhance electric conductivity, mitigate electrolyte decomposition, and alleviate volume effect of the SiOx effectively. This result is hard to be achieved using other kinds of metal oxide besides TiO2. It is hoped that the SiOx/TiO2@MLG is practical for pursuing LIBs with an energy density beyond 300 Wh kg?1. In addition, it is believed the ingenious strategy is applicable for designing more functional materials with greater capabilities.  相似文献   

14.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

15.
Effectively preventing graphene stacking and maintaining ultrathin layers remains a significant research effort for graphene preparation and applications. In this paper, a novel synthetic strategy based on catalyst migration on the surface of a salt template to control the growth of graphene is used to prepare 3D edge‐curled graphene (3D ECG). Under the synergistic effect of the steric hindrance and the migration of the Ni catalyst, 3D ECG forms a special structure in which the intermediate portion is flat and the edge is curled. The resultant unique structure not only effectively prevents the close stacking and aggregation of graphene, but also significantly improves its lithium storage performance. As an anode for lithium ion batteries, the reversible specific capacity can reach 907.5 and 347.8 mAh g?1 at the current density of 0.05 and 5.0 A g?1. Even after 1000 cycles, the specific capacity of 3D ECG can still be maintained at 605.2 mAh g?1 at a current density of 0.5 A g?1, demonstrating excellent rate performance and cycle performance. This new synthesis strategy and unique edge‐curled structure can be used to guide more design of 3D graphene materials for further functional applications.  相似文献   

16.
Flexible freestanding electrodes are highly desired to realize wearable/flexible batteries as required for the design and production of flexible electronic devices. Here, the excellent electrochemical performance and inherent flexibility of atomically thin 2D MoS2 along with the self‐assembly properties of liquid crystalline graphene oxide (LCGO) dispersion are exploited to fabricate a porous anode for high‐performance lithium ion batteries. Flexible, free‐standing MoS2–reduced graphene oxide (MG) film with a 3D porous structure is fabricated via a facile spontaneous self‐assembly process and subsequent freeze‐drying. This is the first report of a one‐pot self‐assembly, gelation, and subsequent reduction of MoS2/LCGO composite to form a flexible, high performance electrode for charge storage. The gelation process occurs directly in the mixed dispersion of MoS2 and LCGO nanosheets at a low temperature (70 °C) and normal atmosphere (1 atm). The MG film with 75 wt% of MoS2 exhibits a high reversible capacity of 800 mAh g?1 at a current density of 100 mA g?1. It also demonstrates excellent rate capability, and excellent cycling stability with no capacity drop over 500 charge/discharge cycles at a current density of 400 mA g?1.  相似文献   

17.
Potassium‐ion batteries (PIBs) are a promising alternative to lithium‐ion batteries because potassium is an abundant natural resource. To date, PIBs are in the early stages of exploration and only a few anode materials have been investigated. This study reports a cobalt sulfide and graphene (CoS@G) composite as anode electrode for PIBs for the first time. The composite features interconnect quantum dots of CoS nanoclusters uniformly anchored on graphene nanosheets. The coexistence of CoS quantum dot nanoclusters and graphene nanosheets endows the composite with large surface area, highly conductive network, robust structural stability, and excellent electrochemical energy storage performance. An unprecedented capacity of 310.8 mA h g?1 at 500 mA g?1 is obtained after 100 cycles, with a rate capability better than an equivalent sodium‐ion batteries (SIBs). This work provides the evidence that PIBs can be a promising alternative to SIBs, especially at high charge–discharge rates. The development of the CoS@G anode material also provides the basis of expanding the library of suitable anode materials for PIBs.  相似文献   

18.
Potassium‐ion batteries (PIBs) are currently drawing increased attention as a promising alternative to lithium‐ion batteries (LIBs) owing to the abundant resource and low cost of potassium. However, due to the large ionic radius size of K+, electrode material that can stably maintain K+ insertion/deintercalation is still extremely inadequate, especially for anode material with a satisfactory reversible capacity. As an attempt, nitrogen/carbon dual‐doped hierarchical NiS2 is introduced as the electrode material in PIBs for the first time. Considering that the introduction of the carbon layer effectively alleviates the volume expansion of the material itself, further improves the electronic conductivity, and finally accelerates the charge transfer of K+, not surprisingly, NiS2 decorated with the bifunctional carbon (NiS2@C@C) material electrode shows excellent potassium storage performances. When utilized as a PIB anode, it delivers a high reversible capacity of 302.7 mAh g?1 at 50 mA g?1 after 100 cycles. The first coulombic efficiency is 78.6% and rate performance is 151.2 mAh g?1 at 1.6 A g?1 of the NiS2@C@C, which are also notable. Given such remarkable electrochemical properties, this work is expected to provide more possibilities for the reasonable design of advanced electrode materials for metal sulfide potassium ion batteries.  相似文献   

19.
Germanium is considered as a promising anode material because of its comparable lithium and sodium storage capability, but it usually exhibits poor cycling stability due to the large volume variation during lithium or sodium uptake and release processes. In this paper, germanium@graphene nanofibers are first obtained through electrospinning followed by calcination. Then atomic layer deposition is used to fabricate germanium@graphene@TiO2 core–shell nanofibers (Ge@G@TiO2 NFs) as anode materials for lithium and sodium ion batteries (LIBs and SIBs). Graphene and TiO2 can double protect the germanium nanofibers in charge and discharge processes. The Ge@G@TiO2 NFs composite as an anode material is versatile and exhibits enhanced electrochemical performance for LIBs and SIBs. The capacity of the Ge@G@TiO2 NFs composite can be maintained at 1050 mA h g?1 (100th cycle) and 182 mA h g?1 (250th cycle) for LIBs and SIBs, respectively, at a current density of 100 mA g?1, showing high capacity and good cycling stability (much better than that of Ge nanofibers or Ge@G nanofibers).  相似文献   

20.
Binder plays a key role in maintaining the mechanical integrity of electrodes in lithium‐ion batteries. However, the existing binders typically exhibit poor stretchability or low conductivity at large strains, which are not suitable for high‐capacity silicon (Si)‐based anodes undergoing severe volume changes during cycling. Herein, a novel stretchable conductive glue (CG) polymer that possesses inherent high conductivity, excellent stretchablity, and ductility is designed for high‐performance Si anodes. The CG can be stretched up to 400% in volume without conductivity loss and mechanical fracture and thus can accommodate the large volume change of Si nanoparticles to maintain the electrode integrity and stabilize solid electrolyte interface growth during cycling while retaining the high conductivity, even with a high Si mass loading of 90%. The Si‐CG anode has a large reversible capacity of 1500 mA h g?1 for over 700 cycles at 840 mA g?1 with a large initial Coulombic efficiency of 80% and high rate capability of 737 mA h g?1 at 8400 mA g?1. Moreover, the Si‐CG anode demonstrates the highest achieved areal capacity of 5.13 mA h cm?2 at a high mass loading of 2 mg cm?2. The highly stretchable CG provides a new perspective for designing next‐generation high‐capacity and high‐power batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号