首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
This paper reviews the experimental work conducted at the physicochemical workstation of the Novosibirsk free electron laser (FEL) since 2005 on developing methods for studying the fractional composition of nanoobjects of different nature. It has been found that the submillimeter radiation of the FEL leads to soft ablation of biological macromolecules. Furthermore, the molecules are transferred to the aerosol phase separately, each type of molecules forms its own fraction of aerosol nanoparticles without destruction and denaturation, and their sizes correlate with molecular weight. It is suggested that submillimeter laser ablation can be used to determine the sizes of nanoobjects of different origin. The paper discusses the results of experiments with mineral clusters, nanopowders, synthetic and biological polymers carried out using traditional methods of investigation of the fractional composition of nanoscale materials (atomic force microscopy, scanning electron microscopy, dynamic light scattering, and x-ray diffractometry) and using the new method—the analysis of the aerosol products of submillimeter laser ablation. It is shown that submillimeter laser ablation with the subsequent registration of aerosol products by modern equipment is a versatile, simple, fast, and accurate method which can complement the above-mentioned methods.  相似文献   

2.
A tapered undulator experiment was carried out at the ELBE far-infrared free electron laser (FEL). The oscillator FEL makes use of a hybrid optical resonator. The main motivation was to see whether the presence of a dispersive medium in the form of a waveguide in the resonator has any effect on the outcome. The FEL saturated power and the wavelength shifts have been measured as a function of both positive as well as negative undulator field amplitude tapering. In contrast to the typical high-gain FELs where positive tapering proves beneficial for the output power we observed an improvement of performance at negative taper. During the same experiments we studied the characteristics of the detuning curves. The width of the curves indicates a maximum small signal gain for zero taper while the output peak power increases with negative taper. The saturated power output, the detuning curve characteristics, and the wavelength shifts agrees with the theoretical predictions. Details of the experiment are presented.  相似文献   

3.
We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.  相似文献   

4.
The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.  相似文献   

5.
Gas phase mid-infrared spectroscopy of molecular ions can nowadays be performed with high performance mass spectrometers coupled to free electron lasers (FEL). The wide and continuous tunability of highly intense FELs in the mid-infrared region can be exploited for performing infrared multiple photon dissociation (IRMPD) spectroscopy of molecular ions. This review will focus on gas phase IRMPD spectroscopic investigations aiming at probing the structure and the reactivity of transition metal complexes. The performance of infrared spectroscopy for characterizing the coordination mode of polydentate ligands and the spin state of the metal will be illustrated. Infrared spectroscopy has also been exploited to probe the reactivity of metal complexes, and a special attention will be given to the infrared spectroscopy of reactive intermediates.  相似文献   

6.
An apparatus for observation of laser-assisted electron scattering (LAES) in femtosecond intense laser fields was developed. The unique apparatus has three essential components, i.e., a photocathode-type ultrashort pulsed-electron gun, a toroidal-type electron energy analyzer enabling simultaneous detection of energy and angular distributions of scattered electrons with high efficiency, and a high repetition-rate data acquisition system combined with a high power 5 kHz Ti:sapphire laser system. These advantages make extremely weak femtosecond-LAES signals distinguishable from the huge elastic scattering signals. A precise method for securing a spatial overlap between three beams, that is, an atomic beam, an electron beam, and a laser beam, and synchronization between the electron and laser pulses is described. As a demonstration of this apparatus, an electron energy spectrum of the LAES signals with 1.4 × 10(12) W/cm(2), 795 nm, 50 fs laser pulses was observed, and the detection limit and further improvements of the apparatus are examined.  相似文献   

7.
The ability of Paul and Penning traps to contain ions for time periods ranging from milliseconds to minutes allows the trapped ions to be subjected to laser irradiation for extended lengths of time. In this way, relatively low‐powered tunable infrared lasers can be used to induce ion fragmentation when a sufficient number of infrared photons are absorbed, a process known as infrared multiple photon dissociation (IRMPD). If ion fragmentation is monitored as a function of laser wavelength, a photodissociation action spectrum can be obtained. The development of widely tunable infrared laser sources, in particular free electron lasers (FELs) and optical parametric oscillators/amplifiers (OPO/As), now allows spectra of trapped ions to be obtained for the entire “chemically relevant” infrared spectral region. This review describes experiments in which tunable infrared lasers have been used to irradiate ions in Penning traps. Early studies which utilized tunable carbon dioxide lasers with a limited output range are first reviewed. More recent studies with either FEL or OPO/A irradiation sources are then covered. The ionic systems examined have ranged from small hydrocarbons to multiply charged proteins, and they are discussed in approximate order of increasing complexity. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:448–467, 2009  相似文献   

8.
A laser-based apparatus for determining the hydrogen diffusion constant in gas mixtures is described. The main units of the apparatus are a diffusion chamber and a computer-based laser system for the selective diagnostics of hydrogen in gas mixtures by coherent anti-Stokes Raman scattering (CARS) in combination with biharmonic pumping based on stimulated Raman scattering. The diffusion constant is estimated by approximating the experimental data that describe changes in the hydrogen concentration with time at a fixed point in the diffusion chamber and comparing them to the exact solution to the diffusion equation for the chosen one-dimensional experimental geometry.  相似文献   

9.
An inner-shell photoionized x-ray laser pumped by the Linac Coherent Light Source (LCLS) free electron laser has been proposed recently. The measurement of the on-axis 849 eV Ne?Kα laser and protection of the x-ray spectrometer from damage require attenuation of the 1 keV LCLS beam. An Al/Cu foil combination is well suited, serving as a low energy bandpass filter below the Cu L-edge at 933 eV. A high resolution grating spectrometer is used to measure the transmission of a candidate filter with an intense laser-produced x-ray backlighter developed at the Lawrence Livermore National Laboratory Jupiter Laser Facility Janus. The methodology and discussion of the observed fine structure above the Cu L-edge will be presented.  相似文献   

10.
Time and wavelength resolved spectroscopy requires optical sources emitting very short pulses and a fast detection mechanism capable of measuring the evolution of the output spectrum as a function of time. We use table-top Ti:sapphire lasers and a free-electron laser (FEL) emitting ps pulses as excitation sources and a streak camera coupled to a spectrometer for detection. One of the major aspects of this setup is the synchronization of pulses from the two lasers which we describe in detail. Optical properties of the FEL pulses are studied by autocorrelation and electro-optic sampling measurements. We discuss the advantages of using this setup to perform photoluminescence quenching in semiconductor quantum wells and quantum dots. Carrier redistribution due to pulsed excitation in these heterostructures can be investigated directly. Sideband generation in quantum wells is also studied where the intense FEL pulses facilitate the detection of the otherwise weak nonlinear effect.  相似文献   

11.
We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-wound setups, no electric power and water cooling are required. In addition, the whole system can be assembled and disassembled at will. The magnetic field is however transverse to the atomic motion and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high quality magnetic field and no further adjustment is needed. After optimization of the laser parameters, the apparatus produces an intense beam of slow and cold (87)Rb atoms. With typical fluxes of (1-5) × 10(10)?atoms/s at 30 m s(-1), our apparatus efficiently loads a large magneto-optical trap with more than 10(10) atoms in 1 s, which is an ideal starting point for degenerate quantum gas experiments.  相似文献   

12.
The first terahertz scanning near-field optical microscope with an attenuated total internal reflection module and a free-electron laser (FEL) as the radiation source was developed. A scanning system with positioning using a confocal sensor with chromatic coding and a surface-subwavelength probe touch sensor were developed and tested. A new technique for sensing the distance between the probe and a conducting surface via corona-discharge current measurement was developed. A specific lock-in system for detection of probe-scattered pulse-periodic radiation, which includes a hot-electron superconducting bolometer and an electronic signal-storage circuit, was developed to operate with the Novosibirsk terahertz FEL. All elements of the microscope were tested, and their working capacity was demonstrated. Experiments on the detection of microscope-probe-scattered terahertz radiation have been initiated.  相似文献   

13.
14.
在远场大气环境下的激光瞄准过程中,大气湍流效应会造成光束的漂移和扩展,从而影响激光器的瞄准精度。本文基于修正的VonKarman湍流谱和部分相干光在湍流大气中的传输理论,设计了高斯光波经过大气湍流后的光场模拟软件,并在一定气象条件下,通过一种激光光轴瞄准偏差测试系统进行外场实验。该测试系统光束直径≤9mm,接收部分为120mm大口径光学镜头。研究了3km范围内强湍流条件下光束的传输特性;结合实验数据,分析了在湍流大气中远场光传播时波束扩展对激光瞄准精度的影响。基于文中研究结果设计的瞄准偏差补偿方案可提高系统在大气能见度10km范围内的瞄准精度。在激光传输距离3km,斜程仰角为0~45°时,激光光斑偏移计算误差≤0.1mrad。  相似文献   

15.
We have designed and developed a laser ablation∕pulsed sample introduction∕mass spectrometry platform that integrates pyrolysis (py) and∕or laser ablation (LA) with resonance-enhanced multiphoton ionization (REMPI) reflectron time-of-flight mass spectrometry (TOFMS). Using this apparatus, we measured lignin volatilization products of untreated biomass materials. Biomass vapors are produced by either a custom-built hot stage pyrolysis reactor or laser ablation using the third harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of He, then skimmed and introduced into an ionization region. One color resonance-enhanced multiphoton ionization (1+1 REMPI) is used, resulting in highly selective detection of lignin subunits from complex vapors of biomass materials. The spectra obtained by py-REMPI-TOFMS and LA-REMPI-TOFMS display high selectivity and decreased fragmentation compared to spectra recorded by an electron impact ionization molecular beam mass spectrometer (EI-MBMS). The laser ablation method demonstrates the ability to selectively isolate and volatilize specific tissues within the same plant material and then detect lignin-based products from the vapors with enhanced sensitivity. The identification of select products observed in the LA-REMPI-TOFMS experiment is confirmed by comparing their REMPI wavelength scans with that of known standards.  相似文献   

16.
An optical diagnostic system is designed and constructed for imaging a free mercury jet interacting with a high intensity proton beam in a pulsed high-field solenoid magnet. The optical imaging system employs a backilluminated, laser shadow photography technique. Object illumination and image capture are transmitted through radiation-hard multimode optical fibers and flexible coherent imaging fibers. A retroreflected illumination design allows the entire passive imaging system to fit inside the bore of the solenoid magnet. A sequence of synchronized short laser light pulses are used to freeze the transient events, and the images are recorded by several high speed charge coupled devices. Quantitative and qualitative data analysis using image processing based on probability approach is described. The characteristics of free mercury jet as a high power target for beam-jet interaction at various levels of the magnetic induction field is reported in this paper.  相似文献   

17.
为了获得2.15~1 500μm的相干光源,研究了CO激光在高质量非线性晶体ZnGeP2和GaSe中的混频效应。为了提高转换效率,在激光锁模方式下对CO激光器的二次谐波、和频和差频的产生进行了研究。结果显示,利用GaSe晶体和ZnGeP2晶体,调Q多谱线CO激光辐射的谱线内倍频效率分别大于0.3%和1.1%。采用ZnGeP2晶体进行倍频时,可调谐锁膜CO激光器的转换效率为12.5%。模拟结果显示,二次谐波与和频产生的输出光谱相同。相邻谱线下,和频和差频的产生过程中,基波和一次谐波可以分别在4.0~5.0μm和100~≥1 200μm(太赫兹范围)形成振荡。利用锁模CO激光器在ZnGeP2晶体中的混频效应,可以得到2.15~≥1 500μm的相干光源,同时转换效率可达到甚至高于12.5%。  相似文献   

18.
A multichannel three-wave far-infrared polarimeter-interferometer will be constructed on the J-TEXT tokamak (R=1.05?m, a=0.27?m, B(T)≤3?T, and I(P)≤350?kA) for current density profile and electron density profile measurements. The system will adopt the three-wave polarimeter configuration which was first introduced on RTP. Three 432.5?μm HCOOH lasers pumped by three CO(2) lasers separately will be adopted, which could generate high output power, nearly 50 mW at each cavity. Two of them will be counter-rotating circularly polarized to probe the Faraday angle, while the third laser will be used as a local oscillator to get the phase shift caused by electron density. Excellent port access (600×76?mm(2)) and high laser power would promise a profile measurement across the whole plasma section with good signal quality. A high-speed digital phase comparator with a few (~2)?μs temporal resolution will be developed, so that fast changes of current or density profile could be measured. Six channels will be installed in the first stage.  相似文献   

19.
A novel experimental apparatus for time and angle-resolved photoemission on solid surfaces is presented. A 6.28 eV laser source operating at 250 kHz repetition rate is obtained by frequency mixing in nonlinear beta barium borate crystals. This UV light source has a high photon flux of 10(13) photons/s with relatively low number of photons/pulse so that Fermi surface mapping over a wide region of the Brillouin zone is possible while mitigating space charge effects. The UV source has been fully characterized spatially, spectrally, and temporally. Its potential for time and angle-resolved photoemission is demonstrated through Fermi surface mapping and photoexcited electron dynamics in Bismuth. True femtosecond time resolution <65 fs is obtained while the energy resolution of 70 meV appears to be mainly limited by the laser bandwidth.  相似文献   

20.
We demonstrate detection and resolution of high power, 34 ns free electron laser pulses using a rectifying field effect transistor. The detector remains linear up to an input power of 11 ± 0.5 W at a pulse energy of 20 ± 1 μJ at 240 GHz. We compare its performance to a protected Schottky diode, finding a shorter intrinsic time constant. The damage threshold is estimated to be a few 100 W. The detector is, therefore, well-suited for characterizing high power THz pulses. We further demonstrate that the same detector can be used to detect low power continuous-wave THz signals with a post detection limited noise floor of 3.1 μW/√Hz. Such ultrafast, high power detectors are important tools for high power and high energy THz facilities such as free electron lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号