首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
The mafic dyke swarms are important feature of the Proterozoic and in parts of some stabilised cratonic areas. The early Proterozoic Bundelkhand massif of Central India is extensively intruded by suites of NW-SE and NE-SW trending mafic and ultramafic dykes. These dykes are mostly dolerites with subordinate pyroxenite, or lamproites, moreover, geochemical signatures of the two compositional types are different for the NW-SE and NE-SW trending suites. 40Ar/39Ar age determinations of the dolerite dykes suggest two phases of dyke activity at c.2150Ma and c.2000 Ma in this region. The dolerites are typically tholeiites and quartz normative types represented by Group I and Group II, whilst the ultramafics are komatiite or basaltic komatiite in composition and show an olivine-normative character. Rare earth element (REE) patterns show some enrichment of LREE and exhibit both positive and negative Eu anomalies. Most of the tholeiites display incompatible elements patterns indicative of an enriched mantle source, whilst those of the ultramafics indicate a depleted source. The 2 Ga event is a global event and well documented in various parts of Singhbhum, Aravalli terrane, Tamilnadu, Andhra Pradesh and Kerala regions of Indian Peninsular Shield and many parts of globe. The genesis of these dyke swarms clearly constitutes a major thermal event affecting the Earth's mantle during that period.  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987112000618   总被引:1,自引:0,他引:1  
The Moyar Shear Zone(MSZ) of the South Indian granulite terrain hosts a prominent syenite pluton (~560 Ma) and associated NW-SE to NE-SW trending mafic dyke swarm(~65 Ma and 95 Ma). Preliminary magnetic fabric studies in the mafic dykes,using Anisotropy of Magnetic Susceptibly(AMS) studies at low-field,indicate successive emplacement and variable magma flow direction.Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites,indicating shear zone guided emplacement.Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated.The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear.Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.  相似文献   

3.
Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50 km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the gravity data, several tectonic features are inferred: the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep seated fault. While the N-S trend of the Gadag schist belt is bounded on its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNWSSE trending fault, the NW-SE extension is likewise bounded by two other NW-SE major faults. Quantitative evaluation from forward modeling/inversion of five profiles in the region, assuming a density contrast of 0.29gm/cc of the anomalous schistose body with the gneissic host rocks indicated a synclinal structure plunging to the southeast along its axis for the Gadag schist belt. The maximum width and depth from surface of the schist belt are 22 km and 5.6 km respectively.  相似文献   

4.
In the Beaujolais-Lyonnais area of the northeastern Massif Central accretion of continental and possibly oceanic crustal fragments occurred between Cambrian (?) and early Carboniferous time. Three distinct lithotectonic units (terranes?) have been recognized. The southern (Lyonnais-) Unit consists of medium- to high-grade metamorphics and includes eclogites; it formed in the early Paleozoic. The Brévenne-Unit to the north contains low- to medium-grade metamorphic mafic and felsic volcanics and subordinate sedimentary rocks which possibly originated during the early Paleozoic until Devonian time, in a sialic back-arc environment or along an active continental margin. The Beaujolais-Unit is represented by volcanics on the south and predominantly shallow marine clastics and carbonates on the north. It developed in a late Devonian or early Carboniferous ensialic marginal basin. The peak of metamorphism in the Lyonnais-unit (HP/HT) was reached in Silurian time. Subsequent NW-SE to E-W oriented convergence produced mylonitic foliation, structural imbrication of the Lyonnais basement rocks with the Brévenne-Unit and SE-vergent folds accompanied by low- to medium-grade metamorphism. Late Visean to Namurian N-S to NW-SE directed N-vergent thrusting produced tectonic imbrication of the metamorphic northern Brévenne-Unit with the nonmetamorphic Beaujolais-Unit. In the southern Brévenne-Unit and in the Lyonnais-Unit updoming along right-lateral high-angle normal faults was followed by emplacement of voluminous granitic plutons of crustal origin. Late Carboniferous to early Permian crustal thinning in the Beaujolais-Lyonnais area was associated with N-S trending left-lateral strike-slip faults and E-W to NE-SW trending right-lateral strike-slip faults. Basins that developed along these faults contain continental red beds.  相似文献   

5.
新疆东准噶尔地区地处阿尔泰、准噶尔和东天山等山系和构造单元的结合部位, 是研究中亚造山带(或称北亚造山区)构造演化的关键地区。以往的研究多集中于东准噶尔的岩石组合和地球化学组成, 相对缺乏构造变形尤其是中小尺度构造变形的研究。初步研究发现东准噶尔分布着大量的中基性暗色岩墙, 它们是后期岩浆侵入到前期构造裂隙中的产物, 可以从时空两个方面为构造裂隙的研究提供制约。本文结合地质资料和高分辨率遥感影像解译, 在琼河坝岛弧带中的和尔赛岩体(早泥盆世)中识别出来了874个暗色岩墙(晚石炭世-早二叠世)片段, 它们的走向以北西西-南东东向为主, 另外还有少数北东-南西和北西-南东走向的岩墙。通过岩墙的宏观变形特征可以推测, 北西西-南东东走向的岩墙形成于压张性裂隙之中, 北西-南东走向的岩墙形成于左行张剪裂隙之中, 北东-南西走向的岩墙形成于右行压剪裂隙之中。这些裂隙形成时平面最大主应力为北西西-南东东方向。结合岩体和岩墙的时代, 本文认为在晚泥盆世-早石炭世期间, 和尔赛岩体由于受到北西西-南东东方向的区域挤压作用而产生相应的裂隙, 可能标志着洋盆结束后碰撞作用的发生, 而晚石炭世-早二叠世暗色岩墙的普遍发育可能是后碰撞岩浆活动的标志。  相似文献   

6.
Aeromagnetic data overcome constrain of inadequate exposures and provide signatures of bodies beneath sediment cover. Present work on analysis of aeromagnetic data over western part of Kaladgi basin provided insight into the basement structures and their role in basin evolution. In the study area, the NW-SE and NE-SW are the major trends of magnetic lineament followed by E-W and N-S trends.Archean to Paleoproterozoic basement is manifested by two structural zones, NW-SE trends related to major lineaments within the basement and the NE-SW trends presumed intra-basinal fault systems which controlled the local depressions. The basin configuration deduced from depth to basement show that the Kaladgi basin is an open deep basin and divided into several sub-basins, separated by fault-controlled NE-SW and NW-SE oriented basement ridges. An intriguing find in the western part are the numerous scattered smaller-scale, circular or semicircular, distinct magnetic anomalies of moderate to strong magnetic signal with strong remenance. Analyses coupled with 3D inversions in combination with sub-surface probing reveal in-homogeneities within basement gneisses and supracrustal rocks of the Kaladgi basin, Dharwar craton. 3D inversions of these circular bodies, suggest that they are apophyses of the intrusions or alternatively as younger intrusive stocks. Sub-surface probing by boreholes over circular bodies revealed leucocratic granite with porphyritic texture emplaced as intrusive within the Chitradurga metasediments. This implies that these intrusives are post-Chitradurga schist and pre Badami sediments as they have not affected the latter. However, they can be presumed to be coeval to potassic granites, which intrude the eastern part of the western Dharwar craton in southern India, until geochronological data are available.  相似文献   

7.
Numerous early Cretaceous mafic and alkaline dykes, mostly trending in N-S direction, are emplaced in the Archaean gneissic complex of the Shillong plateau, northeastern India. These dykes are spatially associated with the N-S trending deep-seated Nongchram fault and well exposed around the Swangkre-Rongmil region. The petrological and geochemical characteristics of mafic dykes from this area are presented. These mafic dykes show very sharp contact with the host rocks and do not show any signature of assimilation with them. Petrographically these mafic dykes vary from fine-grained basalt (samples from the dyke margin) to medium-grained dolerite (samples from the middle of the dyke) having very similar chemical compositions, which may be classified as basaltic-andesite/andesite. The geochemical characteristics of these mafic dykes suggest that these are genetically related to each other and probably derived from the same parental magma. Although, the high-field strength element (+rare-earth elements) compositions disallow the possibility of any crustal involvement in the genesis of these rocks, but Nb/La, La/Ta, and Ba/Ta ratios, and similarities of geochemical characteristics of present samples with the Elan Bank basalts and Rajmahal (Group II) mafic dyke samples, suggest minor contamination by assimilation with a small amount of upper crustal material. Chemistry, particularly REE, hints at an alkaline basaltic nature of melt. Trace element modelling suggests that the melt responsible for these mafic dykes had undergone extreme differentiation (∼ 50%) before its emplacement. The basaltic-andesite nature of these rocks may be attributed to this differentiation. Chemistry of these rocks also indicates ∼ 10–15% melting of the mantle source. The mafic dyke samples of the present investigation show very close geochemical similarities with the mafic rocks derived from the Kerguelen mantle plume. Perhaps the Swangkre-Rongmil mafic dykes are also derived from the Kerguelen mantle plume.  相似文献   

8.
黔西北纳雍-水城一带位于扬子板块西南缘,区内断裂和褶皱极为发育。通过详细野外地质调查,并结合沉积地层接触关系,对区内构造行迹及其组合特征、构造变形期次和构造演化进行探讨。研究表明,震旦纪末至中侏罗世纳雍-水城一带经历了多次构造事件,特别是广西构造事件和印支期构造事件,导致明显的差异剥蚀,但均未造成地层褶皱变形,地层间表现为平行不整合接触。晚侏罗世以后的燕山构造期和喜山构造期才是区内发生构造变形的重要时期。纳雍-水城一带发育的NE-SW、NW-SE及近E-W向三组构造以及在NE-SW、NW-SE向两组构造交接转换部位发育的穹窿构造、构造盆地,均为侏罗纪晚期至早白垩世时期强烈构造事件的产物。其中NE-SW向褶皱及近E-W向断层先期形成,NW-SE向褶皱后期形成,并对先期形成的NE-SW向褶皱进行叠加改造。  相似文献   

9.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

10.
唐渊  刘俊来 《岩石学报》2010,26(6):1925-1937
青藏高原隆升、周边地貌形成是新生代时期印度-欧亚板块碰撞后的重要响应。在滇西北地区发育了一系列由晚新生代(上新世以来)活动断裂所控制的盆地,例如宾川盆地、洱海盆地、鹤庆盆地、弥渡盆地等。宾川盆地是近南北向程海左行走滑断裂在走滑剪切作用下产生的北西向正断层和北东向走滑断层共同作用而形成的一个较大的拉分盆地。洱海盆地是由两组陡立的共轭张剪性(Transtensional)断层组限定的,为一伸展断陷盆地,总体上反映了近E-W向的区域伸展。滇西北地区发育的其它晚新生代盆地,如弥渡盆地、鹤庆盆地、剑川盆地等,也为区域走滑断裂及其分支断裂所控制,并且这些分支断裂在区域上为一组NE-SW和NW-SE向的共轭正断裂,反映了该区域近E-W向的伸展。将藏东南三江地区发育的活动断裂按照其走向分为三组:(1)NW-SE走向的断裂,如红河断裂、无量山-营盘山断裂等;(2)近N-S向断裂系,以程海断裂、小江断裂等为代表;(3)NE-SW走向的断裂,如丽江-剑川断裂、鹤庆-洱源断裂和南定河断裂等。这些断裂的震源机制解表明地震断裂活动性或者是走滑性质或者是伸展属性,它们的组合型式也揭示出藏东南三江地区在上新世以来表现为近E-W向的伸展。区域上,在藏东北部地区发育的断层构造组合普遍反映了以近E-W向挤压为主导的应力场。推测这一现象为上新世以来藏东地区上地壳围绕喜马拉雅东构造结做顺时针旋转所致,区域上受印度-欧亚会聚过程中印度板块顺时针旋转诱发的差异性应力场制约。  相似文献   

11.
Microtectonic study of brittle structures in the József Hill Cave, Budapest, highlights the connection between different phases of fracturing and cave formation. E-W trending dextral faults (second order Riedels) and NW-SE oriented tension fractures developed in a ENE-WSW trending dextral shear zone as a result of WNW-ESE directed compression. Ascending thermal water dissolved cave galleries and created barite veins along these fractures. The first stage of cave formation as inferred from timing of fracturation from the regional stress field was Oligocene-Early Miocene. Between the Middle Miocene and Quaternary new N-S to NE-SW trending normal faults were formed by ESE-WNW extension. Pleistocene differential uplift resulted in the reactivation and enlarging of fault zones, dominantly the E-W trending older Riedels. These recent tectonic events enhanced the original en echelon geometry of the older cave corridors.  相似文献   

12.
The main objective of the most regional-scale aeromagnetic surveys is to assist in mineral development through improved geologic mapping. The aeromagnetic survey of the south-west of Algeria is used for diamond potential evaluation and target-area selection. This region of Algeria, forming part of the west African Craton, has until very recently been under-explored for diamonds. This paper is a contribution to area selection for primary diamond deposits based on a conceptual model for kimberlitic occurrences. According to the proposed exploration model, the emplacement of diamondiferous kimberlites is controlled by three principal criteria: (1) existence of a sufficiently thick lithosphere, favourable to diamond genesis and preservation, (2) presence of major tectonic trends and lineaments that could act as pathways for kimberlitic magma, the principal diamond-bearing lithology, and (3) the recognition of magnetic anomalies related to mafic–ultramafic intrusives, signs of deeply-rooted magma. Interpretation of the aeromagnetic data, using energy spectral analysis and different data-enhancement filters, has permitted elucidation of all three criteria. Their combination provides a final assessment for three possible areas as targets for primary diamond deposits emplacement.  相似文献   

13.
Lineament maps based on Landsat, geological and aeromagnetic data on land, and aeromagnetic, gravity and seismic reflection data at sea have been studied to determine the main lineament trends on land and off-shore in southern Norway.On land there are three main structural trends (NE-SW, NW-SE and N-S) as well as a fourth, weaker trend (E-W). These four trends are thought to represent fracture patterns of Precambrian age.In the off-shore part of the study area, the same four trends are shown by the aeromagnetic data. (The gravity data yield unsatisfactory results for which the reasons are given.) It is therefore concluded that the same type of crystalline basement that is exposed on land also underlies the off-shore area.It is argued that these Precambrian structural trends have also pre-determined lines of weakness in Phanerozoic times. Fracture sets in the Norwegian Caledonides may provide an example of large-scale re-activation of the NE-SW structural trend, and the Viking and Oslo Grabens of the re-activation of the N-S trend.On a smaller scale, and in the off-shore part of the study area, it is likely that a re-activation of the NE-SW structural trend has played a role in the formation of the Ling Graben, the NW-SE trend in the origin of the Sele and Flekkefjord Highs, the N-S trend in the formation of the Lista Nose, and the E-W trend in the formation of the Farsund Sub-basin.  相似文献   

14.
The Paleozoic massif of Tichka in the southern part of the Western High Atlas of Morocco constitutes a structural transition between the Meseta and the Anti-Atlas domains. It was affected by a complex network of fractures noticeable at different scales. Using Landsat ETM+ imagery permits detecting the main fracture directions. Various techniques of lineament’s extraction were applied, including the colored compositions, spectral band ratios, and directional filters applied to the principal component analysis. Lineament’s extraction is based on visual interpretation and completed by field observations. The resulted map allows recognizing at least four trending fracture system, with average N-S, NE-SW, E-W, and NW-SE orientations. The surrounding rocks of the granitic massif show a high fracture density. Tectonic indicators show that this massif is initially affected by NW-SE Variscan tectonic extension, followed by NW-SE Variscan compression. This regime is being maintained until the late Variscan period corresponding to the relaxation of the NW-SE major Variscan stress. A clockwise rotation of the latter stress, which became N-S to NNE-SSW, related to the late Variscan deformation, is responsible for reworking preexisting faults.  相似文献   

15.
The Vestfold Hills, one of several Archaean cratonic blocks within the East Antarctic Shield, comprises a high-grade metamorphic basement complex intruded by at least nine generations of Early to Middle Proterozoic mafic dykes. Extensive U-Pb ion microprobe (SHRIMP) analyses of zircons, derived predominantly from late-stage felsic differentiates of the mafic dykes, provide precise crystallisation ages for several dyke generations. These new ages enable constraints to be placed on both the history of mafic magmatism in the Vestfold Hills and the timing of the various interspersed Proterozoic deformation events. In addition to demonstrating the utility of zircons derived from felsic late-stage differentiates for the dating of co-genetic mafic dykes, this study also places doubt on previous wholerock Rb-Sr dating of mafic dyke suites in this and other areas of East Antarctica. The 207Pb/206Pb zircon ages of 2241±4 Ma and 2238±7 Ma for the Homogeneous and Mottled Norites, respectively, provide a younger emplacement age for associated group 2 High-Mg tholeiite dykes than the whole-rock Rb-Sr date (2424±72 Ma) originally interpreted as the age of all high-Mg intrusives in the Vestfold Hills. Zircon ages of 1754±16 Ma and 1832±72 Ma confirm the previously defined Rb-Sr age of the group 2 Fe-rich tholeiites. Two later dyke generations, the group 3 and 4 Fe-rich tholeiites, are distinguished on the basis of field orientations and cross-cutting relationships, and yield zircon emplacement ages of 1380±7 Ma and 1241±5 Ma which also define minimum ages for two suites of lamprophyre dykes. Xenocrystic zircons within both felsic segregations and mafic dykes yield zircon ages of 2478±5 Ma to 2740 Ma, indicating the presence of Archaean crustal source rocks of this antiquity beneath the Vestfold Hills.  相似文献   

16.
The eastern Pontide magmatic arc extends ~600 km in an E-W direction along the Black Sea coast and was disrupted by a series of fault systems trending NE-SW, NW-SE, E-W, and N-S. These fault systems are responsible for the formation of diachronous extensional basins, rift or pull-apart, in the northern, southern, and axial zones of the eastern Pontides during the Mesozoic. Successive extensional or transtensional tectonic regimes caused the abortive Liassic rift basins and the Albian and Campanian pull-apart basins with deep-spreading troughs in the southern and axial zones. Liassic, Albian, and Campanian neptunian dikes, which indicate extensional tectonic regimes, crop out within the Paleozoic granites near Kale, Gumushane, and the Malm–Lower Cretaceous platform carbonates in Amasya and Gumushane. These neptunian dikes correspond to extensional cracks that are filled and overlain by the fossiliferous red pelagic limestones. Multidirectional Liassic neptunian dikes are consistent with the general trend of the paleofaults (NE-SW, NW-SE, and E-W), and active dextral North Anatolian fault (NAF) and sinistral Northeast Anatolian fault (NEAF) systems. The Albian neptunian dikes in Amasya formed in the synthetic oblique left-lateral normal faults of the main fault zone that runs parallel to the active North Anatolian fault zone (NAFZ).

Kinematic interpretation of the Liassic and Albian neptunian dikes suggests N-S extensional stress or northward movement of the Pontides along the conjugate fracture zones parallel to the NAFZ and NEAFZ. This northward movement of the Pontides in Liassic and Albian times requires left-lateral and right-lateral slips along the conjugate NAFZ and Northeast Anatolian fault zones (NEAFZ), respectively, in contrast to the recent active tectonics that have been accommodated by N-S compressional stress. On the other hand, mutual relationships between the neptunian dikes and the associated main fault zone of Campanian age extending in an E-W direction in the Kale area, Gumushane suggest the existence of a main left-lateral transtensional wrench zone. This system might be accommodated by the counterclockwise convergence of the Turkish plate with the Afro-Arabian plate relative to the Eurasian plate, and the southward oblique subduction of Paleotethys beneath the eastern Pontide magmatic arc during the Mesozoic.  相似文献   

17.
鄂尔多斯盆地东南部中生界地层节理发育特征与古应力场   总被引:3,自引:0,他引:3  
鄂尔多斯盆地东南部中生代地层中发育有六组节理(E-W、N-S、ENE-WSW、NNW-SSE、WNW-ESE、NNE-SSW),并且构成三期的正交节理系统(E-W与N-S、ENE-WSW与NNW-SSE、WNW-ESE与NNE-SSW).三期正交节理系统形成的先后期次为:E-W向和N-S向两组节理最早形成,WNW-ESE向和NNE-SSW向两组节理为第二期形成,ENE-WSW向和NNW-SSE向两组节理则最晚形成.E-W向、N-S向和ENE-WSW向三组节理的节理间距指数(FSI)分析结果表明,节理间距的发育程度除了受岩层厚度控制外,还受区域应力场的控制.E-W向、N-S向和ENE-WSW向三组节理的节理间距率(FSR)值分布范围指示不同组节理在区域上发育程度具有差异性.此外,E-W向的优势节理组的FSR值有超过间距与层厚比值的临界值,而非优势组的SN向节理的FSR值则全部小于临界值,表明E-W向和N-S向两组节理组成最早一期的正交节理系统.盆内中生代地层中的三期正交节理系统,所对应的古应力场分别为:(1)晚侏罗世盆地处在近E-W向的挤压环境下,形成了第一期正交节理系统,为E-W向和N-S向两组节理;应力来源于古太平洋板块向欧亚板块俯冲所产生的NW-SE向的挤压分量.(2)晚白垩世时,来自于古太平洋板块俯冲产生的NW-SE向挤压应力形成了第二期正交节理系统的WNW-ESE向和NNE-SSW向两组节理.(3)晚白垩世末至新生代,印度板块向欧亚板块下的俯冲产生NE-SW向的远程挤压应力,形成第三期正交节理系统的ENE-WSW向和NNW-SSE向两组节理.  相似文献   

18.
Aeromagnetic anomalies over Bastar craton and Pranhita-Godavari (P-G) basin in the south of central India could be attributed to NW-SE striking mafic intrusives in both the areas at variable depths. Such intrusions can be explained considering the collision of the Bastar and Dharwar cratons by the end of the Archaean and the development of tensile regimes that followed in the Paleoproterozoic, facilitating intrusions of mafic dykes into the continental crust. The P-G basin area, being a zone of crustal weakness along the contact of the Bastar and Dharwar cratons, also experienced extensional tectonics. The inferred remanent magnetization of these dykes dips upwards and it is such that the dykes are oriented towards the east of the magnetic north at the time of their formation compared to their present NW-SE strike. Assuming that there was no imprint of magnetization of a later date, it is concluded that the Indian plate was located in the southern hemisphere, either independently or as part of a supercontinent, for some span of time during Paleoproterozoic and was involved in complex path of movement and rotation subsequently. The paper presents a case study of the utility of aeromagnetic anomalies in qualitatively deducing the palaeopositions of the landmasses from the interpreted remanent magnetism of buried intrusive bodies.  相似文献   

19.
A Middle Paleozoic tectonothermal event in the eastern Siberian craton was especially active in the area of the Vilyui rift, where it produced a system of rift basins filled with Devonian–Early Carboniferous volcanics and sediments, as well as long swarms of mafic dikes on the rift shoulders. Basalts occur mostly among Middle Devonian sediments and are much less spread in Early Carboniferous formations. The dolerite dikes of the Vilyui–Markha swarm in the northwestern rift border coexist with the Mirnyi and Nakyn fields of diamond-bearing kimberlites. The voluminous dikes and sills intruded before the emplacement of kimberlites. The Mir kimberlite crosscuts a dolerite sill and a dike in the Mirnyi field, while a complex dolerite dike (monzonite porphyry) cuts through the Nyurba kimberlite in the Nakyn field. Thus, the kimberlites correspond to a longer span of Middle Paleozoic basaltic magmatism. The basalts in Middle Paleozoic sediments have faunal age constraints, but the age of dolerite dikes remains uncertain. The monzonite porphyry dike in the Nyurba kimberlite has been dated by the 40Ar/39Ar method, and the obtained age must be the upper bound of the dike emplacement. The space and time relations between basaltic and kimberlitic magmatism were controlled by Devonian plume–lithosphere interaction.  相似文献   

20.
闹阳坪锌萤石矿床位于北大巴山逆冲推覆褶皱带平利隆起东侧,为该区首次发现的受构造裂隙控制的气水–热液型锌萤石矿床。本文从矿区断裂入手,通过对该区矿床地质、断裂特征、矿体特征的研究,总结了该区断裂的演化序列及其对成矿的控制机制与规律。认为NW-SE向断裂组是矿区的主要控矿构造,矿区断裂变形发育演化序列为晚印支–早燕山期形成近EW向断裂F1,早燕山期形成NW-SE向断裂F7和NE-SW向断裂F4,随后的右行走滑作用叠加有张扭性应力,形成有利于成矿热液运移充填成矿的张扭性右行走滑断裂。并明确了成矿期应变椭球体,恢复了成矿期主压应力方向为NNW向(340°~350°)。在此基础上,预测平面上闹阳坪矿区F7与F8断裂之间为下一步找矿重点地段,剖面上K3萤石矿体下伏北东方向可能存在隐伏矿体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号