首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对国内目前所用油基压裂液成胶速度慢,通常采用间歇施工工艺的缺点,研究开发了一种低伤害连续 施工的油基冻胶压裂液体系。室内试验表明,该压裂液体系(在柴油中加入1.5%胶凝剂、0.24%加速剂)成胶速度 快,搅拌30s粘度可达到158mPa·s左右,120s内就能形成良好的油基冻胶压裂液;抗温抗剪切性能好(在120℃, 170s(?)下连续剪切70min后,压裂液的粘度大于50mPa·s),对岩心伤害率小于6%。对现场施工井统计表明,采用该 压裂液体系进行连续施工,与间歇施工工艺相比单井可节省费用约4万元,施工时间缩短2/3。  相似文献   

2.
低伤害液体胍胶压裂液LGC-1性能研究与应用   总被引:2,自引:1,他引:1  
对低伤害硼交联液体胍胶压裂液的性能进行了研究,结果表明:在压裂液性能相当的情况下,液体胍胶增稠剂较干粉胍胶具有加量低(90℃液体胍胶加量0. 4% )、分散增粘速度快(3min时原胶液粘度为85mPa·s)、抗温抗剪切性能好(90℃下剪切60min后,粘度大于65mPa·s)、破胶返排迅速(120min后破胶液粘度小于5mPa·s)、残渣少(986mg/l)及与地层液体相溶性好等特点。该压裂液在油田现场施工20余井次,获得了较好应用效果。  相似文献   

3.
低伤害清洁压裂液VES-1的研制与应用   总被引:12,自引:1,他引:11  
所报道的VES - 1低伤害清洁压裂液体系 ,是由一种含特殊结构的阳离子表面活性剂增稠剂 4 % (ω)、盐水 2 %~ 4 % (ω)和一种反相离子 0 .35 % (ω)等所组成的。该压裂液的增稠剂具有在水中 1~ 2min以内可均匀分散并形成冻胶 ;抗温能力达 80℃ ;抗剪切性能好 ,在 80℃下剪切 6 0min后 ,压裂液的粘度仍大于 90mPa·s;不用破胶剂 ,在室温下 12 0min后压裂液粘度小于 5mPa·s;伤害低 ,平均岩心恢复率大于 90 % ;平均砂比大于 5 0 %。在现场已成功应用 10井次。  相似文献   

4.
一种速溶无残渣纤维素压裂液   总被引:2,自引:0,他引:2  
早期纤维素压裂液存在配液难、耐温差、破胶不彻底、对地层伤害大等问题。本文介绍的速溶无残渣纤维素压裂液基液由0.4%羟乙基羧甲基纤维素FAG-500、0.2%增黏剂FAZ-1、0.5%调节剂FAJ-305组成。分析了该压裂液的抗盐性、耐温耐剪切性、携砂性、破胶性、动态滤失及伤害性。结果表明,在中等矿化度(242~2444 mg/L)条件下,基液黏度约为67.5 mPa·s,在pH 4.5~5.0下,在基液中加入交联剂FAC-201形成冻胶。在120℃、170 s-1条件下,压裂液冻胶剪切70 min后的黏度约为150 mPa·s,可满足低于130℃储层压裂需求。加入0.002%破胶剂过硫酸铵后,冻胶在100℃、170 s-1条件下剪切1.5 h后的黏度约为200 mPa·s,破胶剂不影响施工时体系的流变性能。破胶后无残渣,破胶液表面张力为24.44 mN/m,界面张力3.20 mN/m。在90℃下,0.3% FAG-500压裂液冻胶的储能模量G′和耗能模量G″分别为7.2 Pa和1.6 Pa。砂比为40%的交联冻胶携砂液在90℃水浴加热6 h后,无沉砂现象,携砂性能良好。压裂液对岩心的渗透率损害率为24.75%。该纤维素压裂液具有速溶易配制、酸性交联、无需防膨剂等特点。在长庆油田两口致密油井和两口致密气井进行了现场应用,施工成功率大于95%,施工有效率100%。  相似文献   

5.
对耐温缓交联瓜胶压裂液体系进行了研究.选择羟丙基瓜胶作为水基冻胶压裂液的稠化剂,无机硼作为交联剂,KY-1作为延缓交联助剂,探讨了KY-1的延缓交联的机理;考察了原液中防膨剂、交联液中无机硼、KY-1、NaOH和交联比等因素对交联时间的影响,以及交联比、无机硼浓度、NaOH浓度对压裂液冻胶耐温性能的影响.针对不同地层温度设计了适用于地温(小于140℃)的耐温缓交联压裂液配方,采用 HAAKERS150流变仪对压裂液耐温耐剪切性能进行了测试,在170 s-1剪切速率下剪切60-120 min后,保留黏度大于80 mPa·s;采用毛细管法测得破胶液黏度小于5 mPa·s.  相似文献   

6.
微胶囊包裹化学生热压裂液体系及其工艺技术研究   总被引:5,自引:0,他引:5  
吴金桥  张宁生  吴新民  刘晓娟  刘静 《石油学报》2005,26(5):115-118,122
在低温浅层油气井及高含蜡、高凝油油井的压裂中,由于低温下常规破胶剂活性太低而使破胶困难,同时也由于注入流体的“冷伤害”而使得压裂增产效果较差。为了避免这些问题的出现,可采用微胶囊包裹化学生热压裂液进行压裂作业。通过实验选定了NaNO2-NH4Cl生热体系,利用相分离法对该体系的催化剂-草酸进行微胶囊包裹。当NH4Cl-NaNO2草酸微胶囊与羟丙基瓜尔胶压裂液复配后,体系的稳定性及抗剪切性能都保持较好。当体系中NH4Cl和NaNO2浓度为2.0mol/L时,草酸微胶囊质量分数为0.93%,过硫酸铵质量分数为0.08%时,在170s-1剪切速度下连续剪切2h后,压裂液粘度能保持在300 mPa·s左右,生热峰值温度能达到78℃,4h后破胶液粘度为3.12 mPa·s。  相似文献   

7.
ZYEB胶囊破胶剂的研制   总被引:4,自引:0,他引:4  
报道了最高使用温度~ 10 5℃的水基压裂液胶囊破胶剂ZYEB的研制。选择过硫酸铵为破胶剂 ,从 10余种材料中筛选出耐油的聚硫 偏丙乳液、防水的PVDC CP、强度好的硅改性纳米乳液 3种材料复合作囊衣。过硫酸铵粒径为 0 .4~ 0 .9mm ,采用Wurster流化床法制备胶囊破胶剂ZYEB ,介绍了制造过程。对ZYEB的性能作了实验评价 :在蒸馏水中的释放率 ,80℃下 1h为 8.6 % ,80℃下 2h为 36 .9% ;加入 0 .1%ZYEB的HPG/有机硼压裂液 ,在 80℃、170s-1下剪切 2h后粘度为 2 13.8mPa·s,粘度保留率为 6 5 .9% ,在 5 0MPa的流体静压力下保持 2h后粘度保留率 >4 0 % ;在 80℃的压裂液中加入 0 .1%压碎的ZYEB(压力 10MPa ,10min) ,30min内粘度下降 80 %以上 ,2h后粘度为 4 .5mPa·s ;加入 0 .1%ZYEB的压裂液 ,80℃时对渗透率~ 0 .0 18μm2 的岩心渗透率的伤害率为8.7% ,远小于国产破胶剂NEB 1和NEB 2造成的伤害率 ,与进口胶囊破胶剂INTEB造成的伤害率 (7.6 % )大体相当。图 3表 4参 7。  相似文献   

8.
为获得性能优良的压裂液稠化剂, 以丙烯酰胺 (AM)、 2-丙烯酰胺基-2-甲基丙磺酸 (AMPS)、 苯乙烯 (St) 和丙烯酸 (AA) 为单体, 采用水溶液聚合法制备出了 AM/AMPS/St/AA 四元共聚物 TKF, 优化了聚合反应条件, 并采用红外光谱表征了 TKF的结构。研究了以稠化剂 TKF 为主剂的压裂液的成胶性能、 耐温抗盐性能、 抗剪切性能和破胶性能。结果表明: 在如下条件下合成的 TKF 具有良好的性能:St 加量为 AM 质量的 9%, AMPS、 AM质量比为 3:7, AA加量为 AM质量的 1.60%, 引发剂加量(相对于单体总量) 0.24 %, 反应温度 45℃, 反应时间 4h, pH 值 8。以稠化剂 TKF 为主剂的压裂液的成胶性、 耐温耐盐性能及抗剪切性能优良。在质量分数 3%的溶液中用 0.3%六次甲基四胺交联后, 所得压裂液冻胶黏度可达 211 mPa·s; 耐温能力达 150℃左右; 在压裂液冻胶中加入 10 g/L 的 CaCl2后黏度仍为 100 mPa·s; 在温度 140℃、 剪切速率 170 s-1下剪切 120 min 后的黏度保留率仍大于 90%。该压裂液用过硫酸铵破胶后的破胶液黏度小于 5 mPa·s, 几乎无残渣, 对地层伤害较小。图 6表2参11  相似文献   

9.
针对植物胶压裂液存在的问题,开发出中高温低浓度合成聚合物压裂液。压裂液组成为:0.35%~0.6%稠化剂SKY-C100A+0.5%~0.7%交联液+0.3%黏土稳定剂LYC-1+0.6%助排剂ZL-1+0.5%破乳剂KCB-1。SKY-C100A 为无水不溶物的阴离子型合成聚合物,通过改变交联调节剂SKY-Y100C加量,体系交联时间可在20~180 s可调。该体系形成的冻胶具有良好的耐温耐剪切性能。SKY-C100A加量为0.35%时,压裂液在80~100℃经170 s-1(包括1000 s-1下高速剪切2 min)剪切2 h后,黏度保持在77~220 mPa·s;SKY-C100A加量为0.45%时,120℃剪切后的黏度约为220 mPa·s;SKY-C100A加量为0.5%时,140℃剪切后的黏度约为83 mPa·s。压裂液冻胶在80℃,经历2 h的静态破胶后残渣含量约为30 mg/L。压裂液在80~120℃下的滤失系数为1.13×10-4~3.62×10-4 m/min0.5,对岩心基质的伤害率为8.3%。与植物胶压裂液相比,该体系不需要其他的pH值调节剂及杀菌剂。  相似文献   

10.
针对青海七个泉油田低渗透 (0 .0 0 1~ 0 .0 3μm2 )、水敏、低温 (2 5~ 30℃ )特点 ,研制了两个系列的柴油基压裂液。胶凝剂是烷基结构分别适合催化柴油和原油的两种磷酸酯 (TH和XK) ;交联剂是偏铝酸钠 ,配液时一次加入 ;破胶剂醋酸钠在低温下具有高效率。压裂液由 1.6 %~ 1.7%TH或XK ,0 .4 %~ 0 .5 %交联剂及 0 .7%~ 1.0 %破胶剂组成。配成的冻胶压裂液 30℃时粘度 6 8~ 110mPa·s(某些配方物在 35℃剪切 30min保持粘度 >10 0mPa·s) ,破胶时间 12~ 2 4h ,破胶液粘度 1.8~ 9.0mPa·s,残渣微量 ,滤失系数C3在 1.83× 10 4 ~ 6 .87× 10 4 m min1 2 范围。在七个泉油藏压裂中选用密度 1.5 6g cm3、粒径 0 .4 5~ 0 .90mm的陶粒为支撑剂。介绍了压裂工艺参数。在 2 0 0 1年进行了 14井次的油基压裂施工 ,施工成功率 85 .7% ,有效率 10 0 % ,对比了 4口井的压裂设计参数和实际施工参数。图 1表 3参 3。  相似文献   

11.
可回收再利用的低分子胍胶压裂液技术研究   总被引:1,自引:1,他引:0  
为解决压裂作业水资源缺乏和返排液难处理的问题,利用pH值控制硼酸盐离解平衡移动原理来改变胍胶压裂液的交联状态,使其在酸性条件下非降解性破胶,胍胶分子结构不被破坏,可实现重复交联。采用生物降解技术,对胍胶进行降解,通过控制降解条件来控制胍胶的降解程度,从而控制胍胶的相对分子质量,制备出了相对分子质量为30×104~50×104、在硼酸盐条件下可交联的低分子胍胶,其水溶液黏度较低,水不溶物质量分数≤4%。并以某固体酸为囊芯、在水中可逐渐溶解的某高聚物为囊衣,采用空气悬浮成膜法制备出了一种胶囊破胶剂,在地面条件下显中性,保证胍胶压裂液顺利交联,而在地层温度和压力条件下逐渐释放出固体酸物质对压裂液非降解性破胶。以低分子胍胶为稠化剂,包裹固体酸的胶囊为破胶剂,开发出了可回收再利用的低分子胍胶压裂液,在四川须家河组储层改造中得到了广泛应用,对返排出的压裂液进行了回收再利用,节能减排效果显著。  相似文献   

12.
三层球体式胶囊破胶剂及其制备方法的研究   总被引:1,自引:0,他引:1  
三层球体式胶囊是用物理方法将囊核、囊幔、囊壳(包衣)三层结构粘结包裹在一起制成的。囊核和囊幔的主要成分为过硫酸铵主体,囊壳采用隔水、耐温、缓慢油溶性较好的聚合物材料。该破胶剂能有效地将冻胶压裂液与过硫酸铵破胶剂隔离,并能在不造成压裂液性能(如流变性、滤失性、携砂性等)过早丧失的前提下大剂量、高浓度使用。与现有技术相比,不仅提高了加入浓度,而且在一定温度、压力下具有延缓释放、触发整体释放和破胶更彻底等特点。  相似文献   

13.
压裂液在压裂过程中起传递压力和携带支撑剂的作用,但聚合物压裂液中聚合物因降解不完全会给储集层带来损害,严重时甚至造成油气井减产。表面活性剂分子是由亲水头基和亲油尾基构成的,溶于水时可聚集为胶束。粘弹性表面活性剂在某些盐存在时,可在低含量时形成类似于聚合物分子那样的棒状胶束,并相互缠绕,而产生粘弹性。粘弹性表面活性剂压裂液因不存在聚合物残渣,对裂缝损害小,而视为清洁压裂液。一般认为,这种压裂液遇到地层中原油或天然气时可破胶,无须外加破胶剂。然而研究表明,天然气并不能使该压裂液破胶,压裂气井时必须外加破胶剂,并为此研究出了一种适合的高分子破胶剂。  相似文献   

14.
国外低伤害压裂液体系研究新进展   总被引:2,自引:0,他引:2  
针对目前国内广泛使用的胍胶系列水基压裂液地层伤害大的缺点,说明了发展低伤害压裂液的必要性。系统介绍了国外Schlumberger公司、Halliburton服务公司、Baker Hughes公司和BJ服务公司目前低伤害压裂液发展和应用概况,其耐温能力、较低的伤害、种类齐全、对各种储层的适应性是国内压裂液无法比拟的;重点介绍了清洁压裂液、Fiber-FRAC*压裂液技术、疏水缔合聚合物/黏弹性表面活性剂复合压裂液和低分子量压裂液技术等压裂液体系,这对国内低渗低压储层和海上油气田的增产有重要借鉴意义。今后,国内压裂液将主要朝着地层伤害小、抗高温、地层适应性强、环境友好的方向发展。  相似文献   

15.
压裂液延迟破胶在压裂施工中具有重要的意义。基于核壳型微球对药物的缓释机理,通过反相微乳液聚合制备了内部包覆过硫酸铵破胶剂的聚(苯乙烯-丙烯酰胺)核壳型微球。在聚丙烯酰胺溶液中加入微球或过硫酸铵后置于80℃干燥箱中,通过测定不同静置时间下溶液的黏度和pH值,评价微球的缓释效果。结果表明,微球直径为50数100 nm。微球通过吸水膨胀使过硫酸铵破胶剂缓慢释放到聚合物溶液中,延缓了破胶剂对聚合物溶液黏度和pH值的影响,有效抑制了聚丙烯酰胺的自由基降解和氧化降解。图8参15。  相似文献   

16.
压裂液技术研究新进展   总被引:2,自引:0,他引:2  
压裂已经广泛应用于增产当中,压裂液的性能在作业中起到至关重要的作用,压裂液存在着破胶难,污染环境,污染储层,抗温抗盐性能差的问题,为此,在研究大量文献的基础上,回顾了压裂液技术的发展和现状,总结了适合不同地层条件的国内外压裂液新技术,以及现阶段存在的问题,展望了未来的发展方向。研究结果表明,目前仍是以聚合物增黏剂为主的水基体系,并且研究出了抗高温清洁压裂液、微束聚合物压裂液、无聚合物压裂液以及新型原油基压裂液等等。水基压裂液残液五步处理法,在现场应用效果明显.残渣、破胶性能、相容性、水锁伤害是储层伤害的主要原因。压裂液将主要朝着地层伤害小、抗温抗盐、地层适应性强、环境友好的方向发展:,  相似文献   

17.
采用延迟破胶技术,在压裂施工过程中加入不同浓度的胶囊破胶剂,利用它的延缓释放特性,使植物胶压裂液耐温、耐剪切稳定性增强,并且可以在不造成压裂液的流变性、滤失性和携砂性等过早丧失的前提下高浓度使用胶囊破胶剂。该技术与常规破胶技术相比,延缓释放率达50%,能更有效地清除液体残渣,减少压裂液对储层的伤害。同时由于有延缓破胶的特性,放喷采用相应的措施,可以降低支撑剂沉降速度,形成较好的沉砂剖面,提供高的裂缝导流能力,并且可以降低滤饼和压裂液残渣的伤害。  相似文献   

18.
压裂是油气增产的主要措施之一,常规水基压裂对环境和水资源带来前所未有的威胁,低伤害和环境友好型无水压裂液将成为今后压裂技术研究与应用的热点。介绍了烃基无水压裂液的组成、技术优势和存在的问题。通过文献调研发现,以二烷基磷酸酯及其盐作为胶凝剂、三价金属离子作交联剂、醋酸钠和碳酸钠作破胶剂制备的烃基无水压裂液技术,能满足130℃以内油气储层压裂施工需求,可解决页岩油气等非常规油气藏在压裂改造中遇到的水资源消耗大、返排废液难处理、储层伤害大等技术难题。烃基无水压裂液在实现油气田绿色高效开发过程中,具有广阔的技术优势和应用前景,但是,施工安全和价格仍然是制约无水压裂液规模化现场应用的最大障碍。   相似文献   

19.
压裂液添加剂对压裂效果的影响及分析   总被引:8,自引:1,他引:7  
龙政军 《钻采工艺》2002,25(2):76-79
破胶剂、粘土稳定剂、破乳剂以及杀菌剂是水基冻胶压裂液除主剂以外的重要添加剂 ,在压裂液的配方中起着不同的作用。根据实验结果 ,讨论分析了这几种压裂液添加剂对压裂液性能和压裂效果的影响  相似文献   

20.
为了改善现场微乳液增稠剂抗温性和稳定差等缺陷,采用水分散聚合法合成了一种新型微乳液聚合物FRSP-1,对产物结构进行了红外表征,采用扫描电镜对FRSP-1水溶液内部结构进行了分析,同时测试了FRSP-1溶液的特性。实验结果表明:2%FRSP-1溶液在170 s-1下、温度由30℃升至150℃时,黏度保持在30 mPa·s以上,在90℃下连续剪切80 min后,FRSP-1溶液黏度大于40 mPa·s,且具有较好的悬砂性、触变性和剪切变稀特性,FRSP-1溶液破胶液性能也能满足压裂液的性能指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号