首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为实现熔盐电解法制备稀土合金工艺大型化、低能耗和高效性,采用25 kA电解电流在氟化物体系中的熔盐电解工艺制备稀土镨钕合金.通过工业实践,探究了电解过程中电解槽结构、电解温度、电流密度、电解质组分、搅炉操作及坩埚材质对电解产品纯度的影响.实验研究确立了25 kA熔盐电解法制备稀土镨钕合金有效控制非稀土杂质含量的工艺参数.   相似文献   

2.
采用液态锌作阴极的熔盐电解法,从氯化钠,氯化钾-氯化稀土熔盐电解质中,电解制备了锌-稀土中间合金。研究了电解质组成,电解温度,电流密度及搅拌等因素对电流效率的影响,在最佳电解工艺条件下,其电流密度84%。X射线衍射分析表明,稀土在锌-稀土中间合金中以ReZn_(11)形式存在。  相似文献   

3.
国内外混合稀土金属及单一稀土常采用熔盐电解法进行生产。本文总结和回顾了熔盐电解制备稀土金属及合金的发展概况,指出稀土熔盐电解未来的发展趋势是:使用节能型电解槽,清洁生产,电解设备大型化和电解过程自动化。  相似文献   

4.
我国熔盐电解法制备稀土金属及其合金工艺技术进展   总被引:8,自引:1,他引:7  
介绍了我国熔盐电解法制备稀土金属及其合金工艺技术的发展历程、现状与发展趋势.经过近60年的发展,氟化物体系氧化物电解工艺已经成为当今生产稀土金属及其合金的最重要的和最主要的生产工艺,我国已经基本形成了完整的、具有完全知识产权的熔盐电解工业技术体系和创新体系;分析总结了当前稀土熔盐电解工艺技术的特点及存在的问题,指出造成目前稀土电解高能耗、高排放的最根本的原因是电解槽型即平行上插阴阳极结构决定的,提出开发节能、环保、大型、高效的稀土电解新技术及设备是稀土电解发展的方向;认为液态下阴极电解制备稀土金属及合金新技术由于阴阳极距可减小至6~7cm,阴、阳极电流密度较小,电解槽压可降低至5~6V,可降低能耗、减少含氟气体排放,具有突出的节能减排潜力,是下一代工业化生产稀土金属及合金的新型电解槽,也是今后稀土电解新技术研究领域的重点发展方向;此外,熔盐电解法制备重稀土中间合金由于具备突出的节能减排效果和成本优势,也是当前的重要开发领域.  相似文献   

5.
《稀土》2021,(1)
电流密度是熔盐电解制备稀土合金过程中的关键技术参数,对电解制备稀土合金的工艺研究具有重要的指导作用。在稀土熔盐电解的发展历程中,对于电流密度的有效合理控制仍存在许多问题亟待解决。而电解制备稀土合金是中国当前的主要方法,且该电解方法效率高、能耗低、产量大。本文综述了稀土熔盐电解制备稀土合金中的电流密度对熔体温度、合金成分、电流效率及电极反应的影响,并阐述了中国稀土熔盐电解法的电流密度发展趋势及展望。  相似文献   

6.
以6 kA稀土熔盐电解槽为研究对象,采用COMSOL Multiphysics多物理场耦合软件,建立稀土熔盐电解槽三维电场和温度场的数学模型进行计算和分析。分析得出:稀土熔盐电解槽内电场分布以阴极与阳极之间电势梯度最大,电势线较为密集;温度场以阴极和阳极中间区域为主要发热区,说明电解发生区域主要集中在阴极与阳极中间。  相似文献   

7.
《稀土》1980,(2)
根据1978年至1985年全国基础科学规划(草案),将于今年八月中、下旬,由中国科学院和科学院长春分院共同主持召开一次全国性稀土熔盐化学和电化学学术交流会议。会议交流的主要内容为:(1)稀土氯化物熔盐电解的电效问题;(2)稀土氟化物—一氧化物体系电解;(3)熔盐电解法制备稀土中间合金及其应用;(4)无水稀土氯化物和氟化物的制备;(5)熔盐电解电极过程的研究;(5)熔盐物化性质和熔盐结构及其测试方法。会议地点定在长春。  相似文献   

8.
借助已有的稀土电解槽温度场理论研究成果,以6kA稀土镨钕电解槽为研究对象,根据实测电解生产数据与稀土金属产品的化学检测结果对电解温度与稀土熔盐电解技术指标之间的关系进行了分析。结果表明,温度对电解过程的正常进行起着重要作用;能使本稀土镨钕电解槽实现高效、稳定生产的最佳电解温度为1 090℃。  相似文献   

9.
詹磊 《甘肃冶金》2012,34(6):32-33
本文介绍了150 kA预焙铝电解槽生产稀土铝中间合金的工业实践。通过多年的生产表明,在铝电解槽添加碳酸稀土用熔盐电解法生产稀土铝中间合金,在实际生产中是切实可行的,所生产合金能满足后序生产需要,并且此方法有利于电解槽电流效率的提高。  相似文献   

10.
以Y2O3为电解原料, 以金属镍棒为自耗阴极、石墨板为阳极, 在常规的石墨电解槽中采用氟化物体系熔盐电解法制备了YNi合金。研究了电解时间、电解温度、电解质组成、阴极电流密度等主要技术参数对电解过程的影响, 并对所制备的钇镍合金进行了表征。结果表明, 熔盐电解制备钇镍合金的较优工艺条件为: 电解温度1 000 ℃, 电解质YF3与LiF质量比为85:15, 阴极电流密度为10.0 A/cm2, 正常电解时电流效率约为72.8%;制备的钇镍合金中Y含量为52.6%, 由YNi2相和YNi相组成, 杂质含量低, 满足稀土储氢合金对原料的使用要求。本文的研究为钇镍合金的规模化生产提供了切实可行的途径。   相似文献   

11.
由科学院长春分院和科学院化学部共同主持,于80年8月28日至9月1日在长春召开了全国稀土熔盐化学和电化学学术交流会。参加这次会议的正式、列席代表共65人。会上交流的论文共32篇。内容涉及国内外熔盐电解的概况、稀土熔盐电解工艺及其电化学基础研究、熔盐电解制取稀土中间合金、稀土金属及其合金在有色金属中应用、熔盐化学和电化学的基本  相似文献   

12.
在稀土熔盐的电解过程中,不同的通电方式对槽内各物理场影响也不同,进而会对电解槽的电解效率产生一定的影响。本文以某企业8 kA稀土电解槽为原型,通过Comsol的热电耦合模块研究通电铜板单侧与多侧分布的通电方式及通电铜板的不同位置分布下的电解槽电解时内部各物理场的变化情况,通过对比电流密度、电势差、电解温度的大小寻找最合适的通电方式。结果表明:只考虑电解效率时,导电板四侧中位通电最优分布方式,此时电解槽内电流密度最大,电能损耗最低,电解效果最好。若考虑制造成本以及可操作性,导电板单侧中位分布是最优解,这种设计的电解槽电解效率较高,同时也留出较大操作空间。其余几种分布均存在弊端,需要进一步完善。该研究旨在为稀土电解槽的结构优化提供参考意见。  相似文献   

13.
利用500A规模电解槽,在氟化锂-氟化镨钕-氟化铈熔盐体系中,以氧化铈与氧化镨钕混合物为电解原料,制备了不同金属配分的镨钕铈合金。研究了不同电解质组成、电解温度(980~1 060℃)以及加料速度对电解过程的影响。研究表明,电解质组成是控制合金中金属配分的关键因素,同时电解温度对金属配分的影响不大。但电解温度偏低或者加料速度偏慢会使电解质液面上升,导致"熔盐外溢"现象的发生。  相似文献   

14.
随着稀土熔盐电解槽电解过程的进行,阴极形状会随着时间的推移发生电腐蚀,电解槽底部阴极锥角α不断增大,对电解效率与热场产生了一定影响.以越南镝铁阴极稀土电解槽为研究对象,利用COMSOL多物理场耦合软件,计算了稀土电解槽中阴极不同电解阶段不同阴极形状的电解特性参数,得到了电解槽中不同阴极锥角α值与最大电流密度关系曲线图,并分析了电解槽内阴极电蚀对整个电解反应过程的影响,为电解槽的后期维护提供了参考依据.   相似文献   

15.
一、前言稀土在铝电线、电缆、铝制品和铝型材及某些交通工具的零部件等方面日益广泛的应用,推动着铝—稀土合金的研制工作迅速发展。氯化物熔盐电解制备铝—稀土中间合  相似文献   

16.
浅议铝电解槽制备铝—稀土合金方法   总被引:1,自引:1,他引:0  
本文评述了制备铝—稀土合金的三种方法。混熔对掺法,铝热还原法和熔盐电解法的优缺点及适用性。论述了工业铝电解槽中添加稀土碳酸盐稀土氧氯化物或稀土氧化物直接生产铝—稀土合金新工艺的各自特点。从理论上阐述了铝电解槽中铝和稀土离子可共电沉积及铝热还原生成铝—稀土合金的机理。铝电解槽添加稀土化合物是目前生产铝—稀土合金的主要方法。提出了铝电解槽中产品合金化的方向。  相似文献   

17.
在KF-AlF_3-Sc_2O_3熔盐体系中,研究下沉阴极法制备Al-Sc合金的工艺技术。采用XRD、SEM分析了所制备Al-Sc合金的物相组成、微观组织以及微区成分含量;研究了电解温度、阴极电流密度、熔盐组成对熔盐电解电流效率的影响。实验结果表明,Al-Sc合金中含有Al相、Sc相以及Al_3Sc相;Al-Sc合金夹杂了少量熔盐,Al_3Sc相在合金中的分布和形态呈不规则状。电解过程的最佳工艺条件为:在KF-AlF_3-Sc_2O_3熔盐体系中,液态铝为下沉阴极,Sc_2O_3为电解质,熔盐体系KF/AlF_3摩尔比1.3,电解温度800℃,电解时间25min,电流密度1.592A/cm~2;此条件下所制备Al-Sc合金中Sc含量最高可达6.710%,平均电流效率达到57.28%。  相似文献   

18.
《稀土》2017,(2)
稀土镁合金在保留镁合金诸多优点的基础上,进一步强化了高温力学性能,有效改善了抗蠕变、耐热、耐腐蚀等性能,是高性能镁合金的典型代表。与传统熔铸法相比,熔盐电解法制备稀土镁合金具有合金成分均匀,收得率高,成本低,易实现大规模、连续化生产等优势。综述了熔盐电解法制备稀土镁合金的研究进展,重点介绍了Mg-Y,Mg-Nd,Mg-Li-RE等合金的电解制备工艺;讨论了氯化物体系和氟化物体系电解制备稀土镁合金的优缺点;指出了高电能消耗、低电流效率、高尾气排放是当前熔盐电解法用于制备稀土镁合金存在的主要问题,并提出了相应的解决措施;最后展望了未来可能的发展趋势,认为电解直接制备多元系应用合金及开发环境友好型的电解工艺是今后熔盐电解生产稀土镁合金的重要研究方向。  相似文献   

19.
目前,稀土熔盐电解法是制取稀土金属的主要工业生产方法之一,其中电解槽保温层是影响电解温度的重要条件之一。以赣州某企业8 kA稀土电解槽为研究对象,利用COMSOL软件进行模拟仿真,研究电解槽保温层厚度不同的情况下电解槽的温度场和电场参数,得到不同保温层厚度下电解槽温度场与电场的分布情况。结果表明:电解槽在电解过程中保温层壁面的温度差要远大于石墨坩埚壁面温度差,表明保温层在电解槽电解过程中起着主要的保温作用;随着保温层厚度的增大,电解区域的温度逐渐增加,温度梯度逐渐减小,温度场分布更均匀;电解槽的阴极表面电流密度先增大后减小,在保温层厚度为78 mm时,阴极表面电流密度达到最大值,即3.568×104 A/m2,阴极表面电流密度越大则电解槽电解效率越高。结合电场和温度场分布结果得出,当电解槽保温层的厚度为78 mm时,电解槽的电解效率最高。  相似文献   

20.
陈宇昕 《稀土》2014,(2):99-107
概述了国内外氟化物熔盐电解制取稀土金属及合金的发展历程,分析总结了实验室中对稀土氟化物熔盐体系研究,其中包括物化性质和电化学性质的研究。数值模拟技术近年来在熔盐电解法制备稀土金属中也起到了很大的作用,因此概述了数值模拟技术在熔盐电解制备稀土金属的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号