首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
为测定煤自然发火时的特征温度,采用程序升温试验系统,并在指标气体分析法的基础上,建立指标气体增长率分析法,选取CO和C2H4指标气体、φ(CO)/φ(CO2)和链烷比及其增长率进行分析,得出取自多矿不同变质程度煤样的煤的自燃特征温度:福城矿不黏煤的临界温度为70~80℃,干裂温度为110~120℃;水帘洞矿弱黏煤临界温度为70~80℃,干裂温度为115~125℃;玉华矿长焰煤临界温度为60~70℃,干裂温度为100~110℃;赵楼矿气肥煤临界温度为80~90℃,干裂温度为110~120℃。分析结果表明:基于指标气体增长率分析法得到的不同变质程度煤样的自燃特征温度同指标气体分析法得到的特征温度一致,且变质程度越高的煤样越不易被氧化。  相似文献   

2.
准东大井矿区主采煤层自燃氧化特性试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用程序升温氧化试验装置对准东大井矿区主采Bm煤层进行了氧化特性试验。研究了其不同粒径煤样自燃临界温度TC、CO初始温度、格雷哈姆指数及CO、O2随温度的变化和其它CnHm气体初始温度。试验表明:在该试验条件下,CO初始温度随煤样粒径的减小而增加,平均CO初始温度为66.37℃;随煤样粒径减小,临界温度有所增加,平均临界温度为154.73℃;Ta-TCO段平均耗氧速率为0.2454mL/min·℃-1,TCO-Tb段平均耗氧速率为4.0049 mL/min·℃-1;随氧化进程继续(即TCO-Tb段),80~100目粒径煤样温度耗氧速率高于120~140目、160~180目粒径煤样耗氧速率,表明该阶段其反应活性大于其他粒径实验煤样反应活性;70~100℃范围内实验煤样R3较R1、R2表征作用更明显;根据氧化特性实验数据,可将CO、温度、O2浓度、格雷哈姆指数R3及C2H4、C2H6、C3H8作为矿井防灭火监测指标指导采场煤自燃火灾防治。  相似文献   

3.
张江石  王建豪 《煤炭工程》2014,46(7):107-110
基于对黄骅港三期筒仓储煤自燃的预警,选取筒仓所储神优-2和外购-1煤样进行程序升温实验,分析了煤体氧化热解产生的各指标气体及随温度的变化规律。实验发现:CO、C2H4、C2H6三种单一指标以及C2H4/C2H6、ΔCO/ΔO2两种复合指标随煤温的变化表现出了良好的规律性,并通过CO在60℃左右时浓度的突增,将煤体倒仓临界温度定为60℃。结合筒仓现有安全装置,采用温度监测和指标气体分析作为筒仓储煤自燃的预警方法。对筒仓内煤体入仓、出仓之前的煤温,以及储煤过程中的煤温、生成的指标气体含量进行实时监控,并设定了合理的报警阈值。  相似文献   

4.
针对黄骅港三期大型筒仓储煤自燃问题,选取所储神优、外购、神混3个具有代表性煤样进行绝热氧化实验,通过计算模型获得各煤样最短自然发火期。研究发现,煤体氧化前期发展较为缓慢,温度超过70℃后短时间内迅速升高,氧化加剧;初温30℃时3种煤样自然发火期约分别为8.2d、10.6d、15.5d,增大初温,发火期骤减。煤最短自然发火期的计算可为筒仓储煤周期及入仓煤温的控制提供依据。  相似文献   

5.
张育恒 《煤炭科学技术》2011,39(12):56-59,64
为研究王台铺矿15号煤层的自然发火规律,利用大型煤堆实验台对其进行了试验模拟研究,通过热电偶测得煤体的温度变化情况,得到煤体内的升温速率、耗氧速度、临界温度及干裂温度等煤样自燃特性参数,结合气相色谱仪对煤自燃过程中产生的指标气体进行分析。结果表明:煤温在临界温度80℃以下时,煤的自身氧化反应过程中产生的热量小,煤样耗氧速度较低,煤体很难发生自燃;在80~110℃时,耗氧速度逐渐增加,反应逐渐加强;当煤温超过干裂温度110℃后,氧化反应急剧加快,放热量也随着增大,同时CO和CO2产生率加快,煤体易发生自燃。  相似文献   

6.
分析了黄骅港三期筒仓所储六种煤样在实验条件下所产生气体的变化规律,确定倒仓的临界温度,并选取适合于监测筒仓所储煤种的指标气体。通过实验室研究与现场实际相结合的方法,将两种预警指标应用于筒仓现有安全监测装置,确立防止煤体自燃的预警方法,指导筒仓的安全运营。  相似文献   

7.
《煤炭技术》2019,(10):80-83
含黄铁矿煤样升温氧化分析对揭示新集二矿含黄铁矿顶板冒落摩擦升温氧化及自燃特性具有重要理论指导意义。进行了黄铁矿程序升温氧化、含硫黄铁矿程序升温氧化及含黄铁矿煤样程序升温氧化3组实验,得出了黄铁矿煤样升温氧化过程样品的温度变化规律及自燃条件。研究结果表明:黄铁矿升温氧化临界温度约75℃,含硫黄铁矿升温氧化的临界温度约60℃,黄铁矿煤样发生自燃的临界温度为110℃~120℃;少量单质硫对黄铁矿粉氧化温度变化的影响不大,纯煤粉升温氧化的临界温度远高于黄铁矿粉的氧化临界温度。  相似文献   

8.
为有效解决袁店二井煤矿7_2煤层自燃问题,对煤样进行程序升温实验研究煤自燃标志气体,通过分析煤氧化过程中不同温度阶段气体产生规律,研究煤自燃预测预报标志气体与其之间的对应关系。结果表明:实验煤样的自热临界温度为60~70℃,氧化活跃阶段临界温度为120~130℃,在60~100℃时,选取CO作为标志气体,在100~130℃时,选取第二火灾系数R_2作为标志气体,在130℃以上时,选取C_2H_4作为标志气体,以C_2H_6、链烷比φ(C_3H_8)/φ(C_2H_6)和烯烷比作为辅助标志气体,以此可判断该煤层煤自燃发展程度。  相似文献   

9.
为了研究抚顺西露天矿矿坑内煤自燃氧化特性,在物理性质测试的基础上进行了原煤的自燃氧化特性实验研究,得到了30~600℃高温氧化过程中的宏观自燃特性及其表征参数,并应用标志气体的增长率分析法确定出露天矿长焰煤高温氧化的特征温度点。结果表明:抚顺西露天矿原煤样品含水率含硫量均较低,挥发分高达42%,煤样比表面积较大,微观结构显示大孔和介孔占95%以上,为煤氧化合反应提供了有利的条件;低温氧化阶段氧气体积分数和耗氧速率变化平缓,200℃以后急剧变化,析出的CO和CO_(2)体积分数呈现指数级增长;CH_(4)、C_(2)H_(4)、C_(2)H_(6)、C3H8体积分数随温度的变化规律相似,即在低温阶段都比较小,随着温度的升高缓慢增大,大约350℃之后均迅速增大至峰值。实测煤样临界温度75℃、干裂温度120℃、活性温度195℃、增速温度240℃以及燃点温度315℃,煤样中挥发分含量高导致临界温度较为提前,但燃点温度较常规偏低。热分析实验结果表明:DSC和放热过程可划分为4个阶段,煤样放热量达到了4714 J/g;自由基浓度与温度成递增关系,活性温度时的浓度相较临界温度阶段增长了约50%,燃点温度时自由基浓度达到了临界温度时刻的2倍,自由基活跃会更加促进煤氧化合反应。  相似文献   

10.
为了提高发耳煤矿近距离煤层自燃预测的准确性,对发耳煤矿6个主采煤层的煤样进行程序升温实验,分别得到低温氧化阶段的临界温度、干裂温度和CO、C2H4等气体产生规律。通过分析煤样的耗氧速率、放热强度、气体比值与温度之间的对应关系,建立了发耳煤矿近距离煤层自燃预测及分级预警指标。结果表明:1煤层和3煤层的氧化性最强,7煤层的氧化性相对较弱。在低温氧化阶段,CO生成量随温度的升高显著增加,在110℃~120℃时开始产生C2H4,耗氧速率、CO产生率、CO2产生率在70℃~80℃和130℃~140℃范围内出现2次明显的突变。通过对比、和气体比值进行分析,能消除实验条件的误差,提高近距离煤层自燃预测的准确性和灵敏度。  相似文献   

11.
 本文采用水玻璃,CaCl2、凝胶三种阻化剂对湖西褐煤、大佛寺不粘煤、袁庄气肥煤、新丰贫煤四种不同变质程度煤样进行处理后,测试其在程序升温条件下40~180℃范围内CO的浓度,并计算临界温度。结果表明经阻化剂处理后的煤样,临界温度均发生了不同程度的升高,其中经CaCl2处理后的煤样临界温度最高,说明CaCl2阻化剂能更有效地抑制活性官能团较早的参与化学反应,从而延缓煤的氧化。  相似文献   

12.
为探究浅埋综采面采空区遗煤氧化过程中的CO产生规律,本文以高家梁矿浅埋煤层为研究对象,与阳泉矿深埋煤层相对比,利用油浴升温氧化系统对高家梁矿不同煤层的综采工作面煤样和阳泉矿煤样进行了升温氧化实验。研究表明:高家梁矿浅埋深各煤样在低温40 ℃时消耗O2产生CO体积分数达到1×10-4;各煤样在氧化升温过程中的耗氧速率、CO产生速率和放热强度随温度升高逐渐增加;高家梁矿浅埋深煤样产生了40 ℃和130 ℃两个临界温度,分别对应加速氧化反应起点和剧烈氧化反应起点,而阳泉矿深埋煤层煤样只有一个不明显临界温度,且相对滞后,达100 ℃~120 ℃;在相同煤温下,高家梁矿浅埋深各煤样CO产生量和产生速率、O2的消耗量和消耗速率均明显大于阳泉矿深埋煤层;高家梁矿浅埋深各煤层比阳泉矿煤层更早进入加速氧化阶段,且所需温度更低。可见,煤层埋藏越浅,升温氧化时煤的耗氧速率和CO产生速率越快,升温对浅埋深煤样的氧化放热促进作用更强。  相似文献   

13.
煤自燃过程中自氧化加速温度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于静态耗氧实验、热分析实验及红外光谱实验结果,结合煤低温氧化阶段的宏观耗氧放热规律及微观活性基团含量变化,对煤的化学动力自氧化加速温度进行了探讨。基于静态耗氧实验结果所得的活化能变化规律显示,随温度升高,煤氧复合的活化能逐渐减小,较高温度时出现负活化能,标志着煤氧复合反应进入自发反应阶段;利用补偿效应推导了等动力学温度点T iso的计算公式,得到实验煤样的T iso为127 ℃。在T iso附近,煤中还原性强的基团急剧减少而含氧基团快速增加;另用热重-差示扫描量热TG-DSC实验结果计算得到在T iso附近活化能达到最低。微观结构变化和宏观放热特征证实了计算所得T iso与煤自氧化加速点的相关性,认为可将等动力学温度点T iso视为煤从低温缓慢氧化进入自活化反应阶段的临界点,即自氧化加速温度点。  相似文献   

14.
阜康矿区白杨河西煤层气井网布设的探讨   总被引:1,自引:0,他引:1  
姬文龙  王亚超  曹建军 《陕西煤炭》2012,31(1):31-33,27
为调查并评价新疆阜康矿区白杨河西煤层气的资源潜力和可采性,在白杨河西一带布设了煤层气小井网。通过对该区地形地质条件和煤层气储层特征的分析,结合国内其它地区小井网布设的经验,确定采用"W"型布设井网,并确定了井间距,以期对今后本区煤层气勘查有所借鉴。  相似文献   

15.
Al含量对TiAlSiN薄膜常温及高温微观形貌的影响   总被引:1,自引:0,他引:1  
采用弧离子增强磁控溅射(AEMS)方法制备了TiAlSiN多元硬质薄膜,研究了不同Al含量对薄膜常温及高温微观形貌的影响。结果表明,此类薄膜均具有致密的显微组织,对应于特定Al含量,薄膜表面形貌最优,缺陷最少;薄膜高温热稳定性和抗氧化能力优异,800℃未观察到明显的表面显微组织变化。  相似文献   

16.
煤自燃模型化合物苯甲醚和苯甲醇的低温氧化   总被引:2,自引:0,他引:2       下载免费PDF全文
根据煤自燃理论及煤分子化学结构,选用苯甲醚和苯甲醇为煤自燃模型化合物,分别研究其中的甲氧基和羟甲基在20~130 ℃的氧化反应。程序升温测试其不同温度下的氧化产物,通过色谱分析对不同温度下模型化合物的氧化特性进行研究。结果表明,苯甲醚及苯甲醇低温氧化均产生一氧化碳、二氧化碳、苯和苯酚。在50 ℃之前,苯甲醚中的甲氧基氧化活性较弱,之后随着温度的升高而不断增加,但增加的幅度较为缓慢;苯甲醇中的羟甲基在70 ℃之前氧化活性较弱,当反应温度上升到70 ℃时,其氧化活性迅速增强;尤其是当温度达到120 ℃时,苯甲醇中的活性基团的氧化活性急剧增强。  相似文献   

17.
高温下神府煤焦/CO2气化反应动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
李绍锋 《煤炭学报》2010,35(4):670-675
在950~1 400 ℃,以神府煤为原料制备了各种慢速和快速热解焦,并对各种热解焦的CO2气化反应动力学进行了研究。研究结果表明:在高温范围内,修正体积模型对神府煤焦/CO2气化反应的模拟明显优于收缩未反应芯模型和随机孔模型;神府煤焦气化反应动力学从低温到高温存在一个偏折点,即低温区(950~1 150 ℃)属化学动力学控制,高温区(1 150~1 400 ℃)属扩散动力学控制。在950~1 150 ℃,神府慢速和快速热解煤焦的表观活化能范围分别为109.21~205.30 kJ/mol和86.88~116.90 kJ/mol;在1 150~1 400 ℃,分别为16.58~52.16 kJ/mol和14.00~32.91 kJ/mol;神府煤焦/CO2气化反应过程也存在动力学补偿效应。  相似文献   

18.
为了探究珲春地区高瓦斯矿井煤自然发火情况,选取该地区板石煤矿22、23a和八连城煤矿18#、26#共4个煤层进行程序升温特性实验,分析了CO及烃类气体产生量随温度的变化规律,优选自然发火标志气体,测算煤自燃临界温度。结果表明,板石22、23a和八连城18#、26#四个煤层的自燃临界温度分别为101.0℃、97.6℃、121.0℃、169.1℃。CO和C2H4的初现温度大约在30℃与80~120℃,且产生量随温度单调递增,可作为煤自燃预测预报的主要参考指标|而同时,为了保证检测的全面与准确,还可以将规律性良好的其他烃类气体、烯烷比和链烷比进行辅助参考。  相似文献   

19.
张镭  郑万成  赵波 《中州煤炭》2021,(11):147-152
为探究同一煤层的煤和煤矸石的自然氧化规律,基于电子自旋共振波谱仪和气象色谱仪,测定了煤和煤矸石在氧化过程中的自由基浓度、g因子、谱图线宽和氧化产物CO的变化规律,并对煤和煤矸石的差异进行了比较。结果表明:随着氧化温度的升高,煤和煤矸石中的自由基浓度均不断增大,煤中的自由基浓度快速增加的临界温度为75 ℃,而煤矸石的临界温度为125 ℃;在氧化初期,煤和煤矸石的g因子变化较小且处于较低水平,煤矸石的g因子开始明显增加的温度为125 ℃,而煤的g因子为150 ℃,在125~190 ℃时,煤矸石的g因子大于煤,当温度超过190 ℃后,煤的g因子开始大于煤矸石;煤和煤矸石的ESR谱图线宽随温度的升高不断减小最后趋于稳定,最小值分别为0.592 5和0.609 2,煤的谱图线宽始终低于煤矸石的线宽;在氧化过程中,同一温度下煤氧化生成CO量高于煤矸石,且煤中CO生成量快速增加的临界温度为100 ℃,而煤矸石中CO快速增加的临界温度在150 ℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号