首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Surface subsidence can cause many environmental problems and hazards (including loss of land area and damage to buildings), and such hazards are particularly serious in coal mining districts. Injecting grout into the bed separation in the overburden has been proposed as an effective control measure against surface subsidence during longwall mining. However, no field trials of this technique have been implemented in mines under villages in China, and thus, its ability to control subsidence in such areas has yet to be demonstrated. In this study, field trials using this technique were carried out during longwall mining under villages in the Liudian coal mine, China. The maximum surface subsidence observed after the extraction was only 0.298 m, which accounts for 10 % of the mining height and is 79 % less than the predicted subsidence. Moreover, no damage occurred to the village buildings either during or after extraction and these buildings remain stable. Thus, this study represents the first successful attempt to control surface subsidence under villages in China using grout injection during longwall mining.  相似文献   

2.
煤矿井筒重复破坏的化学注浆治理   总被引:1,自引:1,他引:0  
兴隆庄矿西风井井筒事隔5a后第二次发生破坏,原因是松散层失水造成第四系压缩下沉。经分析论证,采用地面注水泥浆-化学浆复合注浆工艺,通过浆液在裂隙中流动、凝胶、劈裂、充填,可实现对岩体裂隙的封堵,达到控水、增强、防止沉降的目的。   相似文献   

3.
A Comprehensive Study on Subsidence Control Using COSFLOW   总被引:1,自引:0,他引:1  
Increasingly, mine subsidence is becoming a major issue of community concern. Among the measures of subsidence control, a more effective and economical technology, namely Overburden Grout Injection Technology (OGIT), is recently developed in China and Australia by injecting waste material into the bed separations during longwall mining to achieve subsidence control. The OGIT is proposed for the subsidence control in West Cliff Colliery located at the Southern Coalfield of the Sydney Basin, Australia. The three-dimensional finite element code COSFLOW is applied to investigate in a detail the bed separation developing with longwall mining and the effect of grout injecting into the separations in order to guide the subsidence control design when using the OGIT in West Cliff Colliery longwall mining practice.  相似文献   

4.
Applications of numerical modelling in underground mining and construction   总被引:2,自引:0,他引:2  
Numerical modelling has been used to investigate a variety of problems in underground mining and tunnelling: subsidence induced by longwall coal mining; stresses generated when an open stope is filled cemented backfill and the stability of exposures created during subsequent mining of adjacent stopes; the interaction of two tunnels; and the effects of under-mining a pre-existing tunnel and shaft. In each case, results from nonlinear stress analyses can be used to guide the design of excavations and rock support mechanisms.  相似文献   

5.
In this paper, the Cosserat theory that has been incorporated into a three dimensional finite element code COSFLOW, is applied to analyze the development of bed separations in the layered overburden and grout injection into the bed separations. The mechanism of bed separation development during the longwall mining is investigated. A parametric study is carried out to investigate the effect of major factors including hard rock grade, panel height and panel weight on bed separation development. Based on the modeling, a conceptual model to describe the development process of bed separation is proposed. The effect of grout injecting into the bed separations on subsidence reduction is also studied and the conclusion agrees well with the common realization.  相似文献   

6.
This paper attempts to relate the lithology and fabric of four main groups of Newcastle Coal Measures rock types to their geotechnical properties and engineering behaviour. The four groups comprise: massive sandstone and conglomerate; claystones and tuffs; mudstone, shale and siltstone; and the coal itself. Although their geological relevance is primarily concerned with underground coal mining, these rocks are exposed at the surface across most of Newcastle and its suburbs, and are thus significant in terms of urban environmental geology. The key mining issues include longwall support design and panel layouts, caving and subsidence mechanisms, soft floors and stiff roofs, water inflows and pillar design. The urban geotechnical issues include landslides and rock falls, shallow abandoned mine workings, reactive and erodible soils, waste disposal and potential sources for geomaterials.  相似文献   

7.
Summary Some aspects of subsidence caused by longwall coal mining are analysed using the finite element method. Results of the analysis are compared with a true mine panel, where measurements on subsidence were available. Rock deformations in the overburden were modelled by using an elasto-plastic constitutive model. The study indicates that the shape of the subsidence profile can be predicted reasonably well by using nonlinear finite element analysis.  相似文献   

8.
《Engineering Geology》2001,59(1-2):103-114
Amaga, Angelopolis, Venecia and Bolombolo are small towns located in Antioquia, in the Central Cordillera of the Colombian Andes. Mining has been practised in this region for a period of at least 100 years. This mining has mainly been small-scale, poorly mechanised and restricted to shallow room and pillar workings. Recently, the semi-mechanisation of some mines has enabled coal to be extracted using longwall mining methods. However, this has resulted in subsidence that has caused severe damage to structures, residential property, and agricultural land, and also induced landslides. In the British Isles, there are several reliable methods that can be used to predict the likelihood and magnitude of mining subsidence. The British Coal Corporation and the University of Nottingham have developed one such method, the “Subsidence With Influence Function Technique (SWIFT).” Based on mining subsidence observations undertaken in the coalfields of Britain over a period of approximately 50 years. The SWIFT program was used to predict the magnitude of subsidence, above a longwall panel, at the Industrial Hullera mine in Colombia. The results were then compared with subsidence profiles obtained from precise levelling and field monitoring. In each case, the SWIFT program overestimated the magnitude of mining subsidence by 0.17–0.20 m. However, the morphology of the subsidence profile, area-of-influence and location of maximum subsidence were similar. This overestimation of the predicted subsidence was attributed to the occurrence of strong, igneous rocks, such as rhyolite sills, in the Colombian coal measures. These strong, competent horizons act as cantilever beams during subsidence, causing bed separation and therefore reducing the magnitude of subsidence. In spite of these differences, mining subsidence can be predicted with a reasonable degree of accuracy and precision using the SWIFT technique, provided the software is calibrated and used in conjunction with local expertise.  相似文献   

9.
Evaluating the induced subsidence is a critical step in multi‐seam longwall mining. Numerical modelling can be a cost‐effective approach to this problem. Numerical evaluation of longwall mining‐induced subsidence is much more complicated when more than one seam is to be extracted. Only a few research works have dealt with this problem. This paper discusses the essential requirements of a robust numerical modelling approach to simulation of multi‐seam longwall mining‐induced subsidence. In light of these requirements, the previous works on this topic are critically reviewed. A simple yet robust FEM‐based modelling approach is also proposed that is capable of simulating caving process, rock mass deterioration and subsidence around multi‐seam excavations. The effectiveness of this approach in comparison with two other conventional FEM approaches is demonstrated through numerical examples of two different multi‐seam mining configurations. Results show that the proposed numerical modelling approach is the only robust method, which is capable of simulating multi‐seam subsidence in both demonstrated cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
20a前在抚顺老虎台煤矿512采区进行的我国首例离层注浆减沉试验为探索煤矿可持续开采技术提供了宝贵经验。试验采区地表下沉比预计小的真正原因是采空区密实水砂充填(充满率为70%~85%),覆岩中巨厚绿色页岩层遇水碎胀(碎胀率为185%)和大采深极不充分采动(采动程度系数为0.14)。离层注浆主要起到了使绿色页岩层碎胀的作用,而留在覆岩离层中的粉煤灰量极少(只占煤炭采出体积的3%)难以起到减沉作用。试验结果说明该技术在缓沉方面比减沉更有效。  相似文献   

11.
Summary The demand for increased productivity and the problems associated with mining at greater depths have increased the interest in using the yield pillar concept in the United States. This paper summarizes chain pillar behaviour in a mine that historically experienced coal bumps in both room-and-pillar and longwall sections. Results indicate that, generally, the chain pillars yield as designed, but that yielding occurred either after development or with approach of the longwall face. The Bureau of Mines investigated several yield pillar design approaches to possibly explain observed differences in pillar behaviour. These approaches suggest that very localized conditions, such as coal and rock properties, cover depth, and extraction height, may influence the behaviour of any one pillar. At this mine, yielding chain pillars result in de-stressing of the longwall entries and the transfer of potentially dangerous stress concentrations to adjacent panels. Pre-longwall-mining behaviour indicates the existence of a pressure arch, the width of which increases with depth. Results indicate that use of yield pillars improves stress control, reduces bump potential, and increases resource recovery.  相似文献   

12.
O. Nasir  M. Fall   《Engineering Geology》2008,101(3-4):146-153
The shear stress–strain behaviour and shear strength parameters of the interface between cemented paste backfill (CPB) and rock are of practical importance in the optimal and safe design of CPB structures. An understanding of the shear behaviour and properties at this interface is also required to develop comprehensive interface models for CPB-rock analyses, interface design methods for the static and dynamic stability analysis of CPB structures, and building high performance CPB structures. In this study, direct shear tests were conducted to investigate the interface shear strength behaviour between CPB and rock. All tests were carried out in a standard direct shear test apparatus for a range of curing ages of 1 to 28 days for the CPB. The procedures of the laboratory tests will be described. Results will be presented for interface shear behaviour, including stress–strain curves, vertical deformation and shear strength parameters. The test results show that the shear strength parameters and behaviour of the CPB-rock interface are time-dependent and significantly influenced by the normal load.  相似文献   

13.
近年来,条带法被用来作为承压水上采煤的主要采煤方法。针对承压水上采煤问题,应用流固耦合原理,将孔隙介质中孔隙压力与应力建构在统一的本构模型中,平行计算应力场与渗流场,其实质是煤岩体体积应变对孔隙的影响通过流动本构定律加以反映;反之孔隙压力的变化可引起煤岩体变形。应用FLAC有限差分软件对条带式和长壁式采煤方法的应力发展和岩体破坏情况进行模拟并进行比较分析,证明条带法在降低由采动引起的应力影响范围和程度,从而减小煤层底板破坏程度和范围(主要是深度)的有效性,为合理确定承压水上采煤的开采方案提供了理论依据。  相似文献   

14.
ANSYS在煤矿开采数值模拟中应用研究   总被引:4,自引:2,他引:4  
唐巨鹏  潘一山 《岩土力学》2004,25(Z2):329-332
以典型矿井山东华丰矿、阜新五龙矿和北京大台井为例,利用ANSYS有限元软件,对煤矿开采引起的地表沉陷、冲击地压危险区域确定和俯伪斜采煤法参数优化进行了数值模拟分析.分别针对所处的地质条件和赋煤状况,建立了二维或三维有限元模型,模拟计算了地表沉陷曲线和最大沉陷位置,指出山东华丰矿随开采推进沉陷位移和影响范围将逐渐扩大,最大沉陷位移逐步向开采方向前移的规律,当开采800 m时出现最大下沉速度3.5 mm/d,最大沉陷位移为3.7 m.五龙矿311面当开采100m和400 m时分别由于火成岩墙和应力集中区贯通导致顶板易断裂而极易发生冲击地压事故;大台井俯伪斜采煤法煤层倾角只有在60°~67° 时,推采距离才对煤层顶板法向最大压应力具有明显影响,且顶底板法向最大位移规律为上部位移大于中部位移,西中部位移又大于下部位移,在煤层倾角70°时,工作面超前支撑压力作用范围最小为30 m,而下巷道支撑压力作用范围最大为25 m,巷道数为3时,顶板下巷道超前支撑压力峰值位置为5.3 m.ANSYS计算结果表明,该数值模拟是合理的,与实际情况基本吻合,说明ANSYS在煤矿开采领域是一种有效的数值模拟工具.  相似文献   

15.
16.
Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re?>?32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.  相似文献   

17.
Jean-Philippe Bellot   《Tectonophysics》2008,449(1-4):133-144
The role of fluids in the deformation of continental serpentinites is investigated from structural, microstructural and petrographic analyses applied to a km-scale porphyroclast mantled in a viscous matrix of amphibolites. The clast is sited within a shear zone of the Palaeozoic Maures massif, France. Syntectonic fluid–rock interactions occurred from km to mm scales, at first on the clast borders (along the main rheological boundaries) then within the clast. They are accommodated macroscopically by slickenfibers faults and microscopically by shear microcracks within crack-seal veins, typifying an intermediate, brittle–ductile behaviour of serpentinites. Three main stages of deformation–serpentinisation processes occurred in relation with the left-lateral movement of the hosted shear zone. They developed under metamorphic conditions evolving from amphibolites to green-schists facies conditions ( 400 MPa/550 °C to  200 MPa/< 300 °C), as inferred from the surrounding sheared amphibolites. Deformation and serpentinisation increase through time although fluid pressure decreases. If the shape of the inclusion and its orientation relative to the shear zone mainly controlled the deformation pattern though time (P then R' shears), fluid pressure is required for starting deformation–serpentinisation processes along inherited anisotropy planes. Whatever the origin of fluids, they play a key role all along the deformation processes by influencing stress states within the shear zone at the onset of deformation and by changing at various scales and through time behaviour of the rock, depending of the intensity of serpentinisation and the rate of deformation.  相似文献   

18.
以离石—军渡高速公路下伏康家沟煤矿采矿地质条件为原型,采用相似材料模拟实验方法,对多煤层开采引起的覆岩移动及地表变形规律进行了研究。相似模拟实验结果表明:多煤层开采条件下,随着煤层累计采厚的增加,采空区"三带"覆岩下沉量和采空区地表沉降量、地表倾斜变形、地表水平位移及地表曲率变形都呈增大趋势,采空区上覆岩体更加破碎,地表变形更加强烈。研究成果可为高速公路下伏多煤层采空区的治理设计提供依据。  相似文献   

19.
The paper presents an innovative numerical approach to simulate progressive caving of strata above a longwall coal mining panel. A proposed Trigon logic is incorporated within UDEC to successfully capture the progressive caving of strata which is characterized by fracture generation and subsequent propagation. A new damage index, D, is proposed that can quantify regions of both compressive shear and tensile failure within the modelled longwall. Many features of progressive caving are reproduced in the model and found to fit reasonably well with field observations taken from a case study in the Ruhr coalfield. The modelling study reveals that compressive shear failure, rather than tensile failure, is the dominant failure mechanism in the caved strata above the mined-out area. The immediate roof beds act like beams and can collapse in beam bending when vertical stress is dominant or in beam shear fracture when horizontal stress is dominant. The proposed numerical approach can be used to guide the design of longwall panel layout and rock support mechanisms.  相似文献   

20.
Mining subsidence and its effect on the environment: some differing examples   总被引:14,自引:3,他引:11  
 The impact of mining subsidence on the environment can occasionally be very catastrophic, destroying property and even leading to the loss of life. Usually, however, such subsidence gives rise to varying degrees of structural damage that can range from slight to very severe. Different types of mineral deposits have been mined in different ways and this determines the nature of the associated subsidence. Some mining methods result in contemporaneous subsidence whereas, with others, subsidence may occur long after the mine workings have been abandoned. In the latter instance, it is more or less impossible to predict the effects or timing of subsidence. A number of different mineral deposits have been chosen to illustrate the different types of associated subsidence that result and the problems that arise. The examples provided are gold mining in the Johannesburg area; bord and pillar mining of coal in the Witbank Coalfield, South Africa; longwall mining of coal in the Ruhr district; mining of chalk and limestone in Suffolk and the West Midlands, respectively; and solution mining of salt in Cheshire. These mineral deposits have often been worked for more than 100 years and, therefore, a major problem results from abandoned mines, especially those at shallow depth, the presence of which is unrecorded. Abandoned mines at shallow depth can represent a serious problem in areas that are being developed or redeveloped. Abstraction of natural brine has given rise to subsidence with its own particular problems and cannot be predicted. Although such abstraction is now inconsequential in Cheshire, dereliction associated with past subsidence still remains. Received: 21 October 1999 · Accepted: 14 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号