首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Attaining the vision for science teaching and learning emphasized in the Framework for K‐12 Science Education and the next generation science standards (NGSS) will require major shifts in teaching practices in many science classrooms. As NGSS‐inspired cognitively demanding tasks begin to appear in more and more science classrooms, facilitating students' engagement in high‐level thinking as they work on these tasks will become an increasingly important instructional challenge to address. This study reports findings from a video‐based professional development effort (i.e., professional development [PD] that use video‐clips of instruction as the main artifact of practice to support teacher learning) to support teachers' learning to select cognitively demanding tasks and to support students' learning during the enactment of these tasks in ways that are aligned with the NGSS vision. Particularly, we focused on the NGSS's charge to get students to make sense of and deeply think about scientific ideas as students try to explain phenomena. Analyses of teachers' pre‐ and post‐PD instruction indicate that PD‐participants began to adopt instructional practices associated with facilitating these kinds of student thinking in their own classrooms. The study has implications for the design of video‐based professional development for science teachers who are learning to facilitate the NGSS vision in science classrooms.  相似文献   

2.
Abstract

This study explored utilizing augmented reality (AR) and project-based learning (PBL) strategies to increase students’ understandings of sociological paradigms and the theorists’ motivations behind their development. Using a posttest-only quasi-experimental control group design with experimental intervention, three groups of students’ scores were compared on a post-unit assessment. The PBL-only group, the PBL-AR group, and a control group were also compared over time on the post-unit assessment, a quiz, and the midterm. PBL-AR students’ scores were higher on all three assessments. The project’s design, implementation, and findings are discussed, along with implications for future curricular redesign using novel tools and technologies.  相似文献   

3.
To improve student science achievement in the United States we need inquiry-based instruction that promotes coherent understanding and assessments that are aligned with the instruction. Instead, current textbooks often offer fragmented ideas and most assessments only tap recall of details. In this study we implemented 10 inquiry-based science units that promote knowledge integration and developed assessments that measure student knowledge integration abilities. To measure student learning outcomes, we designed a science assessment consisting of both proximal items that are related to the units and distal items that are published from standardized tests (e.g., Trends in International Mathematics and Science Study). We compared the psychometric properties and instructional sensitivity of the proximal and distal items. To unveil the context of learning, we examined how student, class, and teacher characteristics affect student inquiry science learning. Several teacher-level characteristics including professional development showed a positive impact on science performance.  相似文献   

4.
The Next Generation Science Standards (NGSS) strives to shift science learning from the teacher as a single cognitive agent, to a classroom community in which participants are working together in directing the classroom's communal knowledge to figure out questions about how phenomena occur, and building, testing, and refining their ideas to address those questions. To achieve this type of classroom environment, teachers should attend to students' knowledge and ideas and pay attention to how students are located within teacher-led interactions, such as being positioned as active discussants or designated listeners. In this study, we explore if and how this is occurring in the NGSS era. We used a naturalistic inquiry to explore how an experienced first-grade teacher used a new NGSS-aligned unit that called for students to use the science and engineering practices (SEP) to build content knowledge. We used a macro-analytic lens to answer the research question “how are class discussions shaped to address the SEP”? We used a micro-analytic lens to answer the research question “how are students positioned during these science discussions in this classroom?” Evidence suggests that the teachers' whole class discussions incorporated and involved the SEP which were specified in the unit lessons for content learning. However, on a micro-analytic level, we found that few students were positioned as active discussants. The teacher heavily relied on those students who could provide succinct and clearly relevant answers while positioning the remainder of the students as silent spectators. Implications from this research suggest that not only new NGSS curriculum materials need to focus on what students should know and do but they also need to address heuristics for teachers that show them how to position all of their students as active doers of science so all students have opportunities to build deeper, core science knowledge.  相似文献   

5.
The idea of using science notebooks as a classroom assessment tool is not new. There is general agreement that science notebooks allow teachers to assess students' conceptual and procedural understanding and to provide the feedback students need for improving their performance. In this study we examined the use of science notebooks as an unobtrusive assessment tool that can also be used by individuals outside the classroom (for example, school district personnel), and as a means for obtaining information about students' learning and their opportunities to learn. More specifically, in this study students' science notebooks were used as a source of data about the (a) implementation of a curriculum's intended activities, (b) students' performance, and (c) quality of teachers' feedback. Our results indicated that: (1) Students' science notebooks can be reliably scored. Unit implementation, student performance, and teacher feedback scores were highly consistent across raters and units. (2) High and positive correlations with other performance assessment scores indicated that the student performance score can be considered as an achievement indicator. And (3) low performance scores across the two units revealed that students' communication skills and understanding were far away from the maximum score and did not improve over the course of instruction during the school year. This result may be due, in part, to the fact that no teacher feedback was found in any of the students' notebooks across the six classrooms studied. This may reflect some characteristics of the teachers' assessment practices that may require further professional development.  相似文献   

6.
《Africa Education Review》2013,10(4):563-583
Abstract

Summative assessment qualifies the achievement of a student in a particular field of specialization at a given time. Questions should include a range of cognitive levels from Bloom's taxonomy and be consistent with the learning outcomes of the module in question. Furthermore, a holistic approach to assessment, such as the application of the principles of the Herrmann Whole Brain Model, needs to be used to accommodate learning style diversity. The purpose of this study was to analyse, assess and compare the summative assessment of two third year level modules in the Bachelor of Science degree programme, namely Biochemistry and Zoology as part of action research with a view to enhancing the professional development of the lecturers involved. The questions posed in summative assessments were classified in terms of Bloom's differentiation of cognitive levels and the four different learning styles determined by Herrmann. Spearman's non-parametric analysis indicated that no correlation existed in this study between cognitive level and student performance based on achievement. In addition, there was not much difference between the cognitive levels and student performance between the two disciplines. Although the students seemed to do better at application level questions, the authors need to reflect on whether the assessments were valid with respect to the learning outcomes, methods of facilitating learning, and the assessments based on cognitive levels and learning style preferences. We conclude that continuous action research must be taken to improve the formulation of learning outcomes and students' achievement of these outcomes and quality of student learning – the main aim being the successful completion of the modules.  相似文献   

7.
8.
9.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

10.
The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71 teachers across 13 schools in two states indicated that online units effectively deepened science knowledge across all three student groups. Comparing all treatment and control students on pretest-to-posttest improvement on standards-based content-specific assessments, there were statistically significant mean differences (17% improvement treatment vs. 6% control; p?相似文献   

11.
Abstract

Effective communication of science is a ubiquitous learning outcome for most science degrees, and a national threshold learning outcome for science in Australia. Evidence suggests that employers and academics are dissatisfied with the communication skills of many science graduates. Our study examines communication tasks used in summative assessment in bachelor of science (BSc) degrees. We compiled public information for all units of study from the BSc programmes at five research-intensive Australian universities. Our analysis suggests that science academics place high value on developing the ability of students to communicate, with 66% of all science units (n?=?1225) using one or more communication tasks as assessment (mean weighting 44%). However, opportunities for students to communicate in a variety of contexts are lacking. We found that communication tasks from eight majors (n?=?683) across the five universities addressed a very narrow range of contexts; an audience of scientists (including students) in the same discipline (97%), in the mode of traditional writing (79%) and for the purpose of interpreting and presenting results (66%). As such, assessment practice does not match the variety of contexts required by the Australian threshold learning outcomes or guiding statements in other countries. We identify opportunities and offer practical recommendations to help correct this mismatch.  相似文献   

12.
This study examined the relationship between students' out‐of‐school experiences and various factors associated with science learning. Participants were 1,014 students from two urban high schools (secondary schools). They completed a survey questionnaire and science assessment describing their science learning experiences across contexts and science understanding. Using multilevel statistical modelling, accounting for the multilevel structure of the data with students (Level 1) assigned to teachers (Level 2), the results indicated that controlling for student and classroom factors, students' ability to make connections between in‐school and out‐of‐school science experiences was associated with positive learning outcomes such as achievement, interest in science, careers in science, self‐efficacy, perseverance, and effort in learning science. Teacher practice connecting to students' out‐of‐school experiences was negatively associated with student achievement but has no association with other outcome measures. The mixed results found in this study alert us to issues and opportunities concerning the integration of students' out‐of‐school experiences to classroom instruction, and ultimately improving our understanding of science learning across contexts.  相似文献   

13.
In a technologically driven society, math and science students in the United States are falling further and further behind their international counterparts, resulting in an influx of STEM focused, reformed K-12 schools, including schools focused on project-based learning (PBL). This article reports a study of the effectiveness of PBL on high school students' performance on state mandated standardized mathematics and science achievement measures. Manor New Tech High School is a nationally recognized model STEM school, with a diverse student population, where all instruction is delivered through PBL. Although there is ample research suggesting that PBL is advantageous for increasing STEM learning compared to conventional teaching approaches, there is a lack of studies randomly assigning students to receive PBL. Further, some of the effects observed for students attending project-based schools could be due to a self-selection bias for students or parents that choose such an alternative learning environment. This study addresses both of these concerns and found that students taught through PBL, as a group, matched performance of conventionally taught students on all science 11th grade and mathematics 9th, 10th, and 11th grade TAKS achievement measures and exceeded performance by a scale score increase of 133 for the 10th grade science TAKS measure by (B = 133.082, t = 3.102, p < .05). One possible explanation of the differences observed in this study could be the TAKS instrument used to capture student math and science achievement that interprets “real-life applications” of content differently between math and science questions. These results align with literature on the effects of PBL and deepen our understanding of these effects by providing a controlled study with random assignments to the PBL experience. Future research looking at the effect of PBL on achievement on the PISA could be beneficial in identifying benefits of PBL implementation in schools.  相似文献   

14.
This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t(52) = 11.07, p = .000.  相似文献   

15.
Ensuring that all students, including English language learners (ELLs) who speak English as a second language, succeed in science is more challenging with a shift towards learning through language-intensive science practices suggested by the Next Generation Science Standards (NGSS). Interactive visualization technologies have the potential to support science learning for all students, including ELLs, by providing explicit representations of unobservable scientific systems. However, whether and how such technologies can be beneficial for these underserved students has not been sufficiently investigated. In this study, we examine the short-term and long-term effects of interactive visualizations in improving linguistically diverse eighth-grade students’ understanding of properties of matter and chemical reactions during inquiry instruction. The results show that after interacting with the visualizations, both ELLs and non-ELLs showed significant improvement in their understanding of the target concepts at the molecular level on both the immediate test and the delayed test (3 months after the study). In particular, aligned with the goals of the NGSS, all students, including ELLs, were able to demonstrate their understanding of how energy and matter are involved in chemistry through developing molecular models, critiquing models, and constructing scientific explanations. This study shows the potential benefits of using interactive visualizations during inquiry instruction as a resource to help all students, including ELLs who are traditionally underserved in mainstream classrooms, develop a more coherent understanding of abstract concepts of molecular processes during chemical phenomena.  相似文献   

16.
This study illustrated a pathway of growth that a preservice teacher might traverse when learning to use and develop equitable assessments (EA). The study is rare in that it looks at the development of preservice teachers’ understanding and ability to design EA. I examined the understanding and implementation of EA of 23 secondary preservice teachers within two classes. The methods classes focused on the academic content area of science. Participants’ journals, teaching philosophies, and inquiry-based science units served as data sources. Participants progressed from a simple view of EA as “fairness” to a more sophisticated view of EA, including: ways to increase fairness, the importance of challenging students, and using assessments for learning. Results also showed changes in preservice teachers’ views of learners and the purpose of assessment. While understanding developed robustly, teachers’ assessment plans in their units were not as strong. Teacher education programs need to place more emphasis on developing critical understanding of EA practices to meet the needs of diverse learners.  相似文献   

17.
Can extended opportunities for self-assessment over time help students develop the capacity to make better judgements about their work? Using evidence gathered through students' voluntary self-assessment of their performance with respect to assessment tasks in two different disciplines at two Australian universities, the paper focuses on the effects of sequences of units of study and the use of different types of assessment task (written, oral, analysis, and project) in the development of student judgement. Convergence between student criteria-based gradings of their own performance in units of study and those allocated by tutors was analysed to explore the calibration of students' judgement over time. First, it seeks to replicate analyses from an earlier smaller-scale study to confirm that students' judgements can be calibrated through continuing opportunities for self-assessment and feedback. Second, it extends the analysis to coherently designed sequences of units of study and explores the effects of different types of assessment. It finds that disruptive patterns of assessment within a sequence of subjects can reduce convergence between student and tutor judgements.  相似文献   

18.
This mixed-method, longitudinal study investigated the benefits of project-based learning (PBL) on secondary-mathematics students' academic skill development and motivated strategies for learning (i.e., cognitive, social, and motivational). The focus of this study was academic skill development (algebra- and geometry-assessment scores) and other factors related to secondary mathematics learning, with comparable traditional high schoolers serving as the control group. In addition, the relationship between PBL and racially/ethnically and economically diverse secondary students was investigated. Results showed that at-risk and minority students benefited greatly from PBL in learning mathematics. The academic performance gap was present, but its width diminished significantly. Compared to their public school counterparts, PBL students were more intrinsically motivated, showed significantly higher critical thinking skills, and appreciated peer learning. Impact of socioeconomic status on the PBL approach needs further investigation.  相似文献   

19.
20.
Computational thinking (CT) is a way of making sense of the natural world and problem solving with computer science concepts and skills. Although CT and science integrations have been called for in the literature, empirical investigations of such integrations are lacking. Prior work in natural selection education indicates students struggle to explain natural selection in different contexts and natural selection misconceptions are common. In this mixed methods study, secondary honors biology students learn natural selection through CT by engaging in the design of unplugged algorithmic explanations. Students learned CT principles and practices and applied them to learn and explain the natural selection process. Algorithmic explanations were used to scaffold transfer of natural selection knowledge across contexts through investigation of three organisms and the creation of generalized natural selection algorithms. Students' pre- and post-unit algorithmic explanations of natural selection were analyzed to answer the following research questions: (a) How do students' conceptions of natural selection change over the course of a CT focused unit? (b) What is the relationship between CT and natural selection in students' algorithmic explanations? (c) What are students' perspectives of learning natural selection with CT? Results indicate students' conceptions of natural selection increased and natural selection misconceptions decreased over the course of the unit. Within their post-unit algorithmic explanations, students used specific CT principles in conjunction with natural selection concepts to explain natural selection, which helped them to learn the details of the natural selection process and correct their natural selection misconceptions. Students indicated the use of CT in unplugged algorithmic explanations in different contexts helped them learn natural selection. This study shows unplugged CT can be used to teach students science content, and it provides an example for further CT and science integrations. Implications for the field are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号