首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given a distributed system of \(n\) balls and \(n\) bins, how evenly can we distribute the balls to the bins, minimizing communication? The fastest non-adaptive and symmetric algorithm achieving a constant maximum bin load requires \(\varTheta (\log \log n)\) rounds, and any such algorithm running for \(r\in {\mathcal {O}}(1)\) rounds incurs a bin load of \(\varOmega ((\log n/\log \log n)^{1/r})\). In this work, we explore the fundamental limits of the general problem. We present a simple adaptive symmetric algorithm that achieves a bin load of 2 in \(\log ^* n+{\mathcal {O}}(1)\) communication rounds using \({\mathcal {O}}(n)\) messages in total. Our main result, however, is a matching lower bound of \((1-o(1))\log ^* n\) on the time complexity of symmetric algorithms that guarantee small bin loads. The essential preconditions of the proof are (i) a limit of \({\mathcal {O}}(n)\) on the total number of messages sent by the algorithm and (ii) anonymity of bins, i.e., the port numberings of balls need not be globally consistent. In order to show that our technique yields indeed tight bounds, we provide for each assumption an algorithm violating it, in turn achieving a constant maximum bin load in constant time.  相似文献   

2.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

3.
We derive a general upper bound of the \(R_h\) -restricted connectivity for the arrangement graph, namely the minimum cardinality of a vertex set, whose removal disconnects the graph, but every remaining vertex has at least \(h ({\ge }0)\) neighbors in the survival graph. We show that this upper bound is exact when \(h \in [0, 2]\) and provide an asymptotic lower bound for the cases where \(h\ge 3\).  相似文献   

4.
This work is concerned with the study of two-level penalty finite element method for the 2D/3D stationary incompressible magnetohydrodynamics equations. The new method is an interesting combination of the Newton iteration and two-level penalty finite element algorithm with two different finite element pairs \(P_{1}b\)-\(P_{1}\)-\(P_{1}b\) and \(P_{1}\)-\(P_{0}\)-\(P_{1}\). Moreover, the rigorous analysis of stability and error estimate for the proposed method are given. Numerical results verify the theoretical results and show the applicability and effectiveness of the presented scheme.  相似文献   

5.
A well-established method of constructing hash functions is to base them on non-compressing primitives, such as one-way functions or permutations. In this work, we present \(S^r\), an \(rn\)-to-\(n\)-bit compression function (for \(r\ge 1\)) making \(2r-1\) calls to \(n\)-to-\(n\)-bit primitives (random functions or permutations). \(S^r\) compresses its inputs at a rate (the amount of message blocks per primitive call) up to almost 1/2, and it outperforms all existing schemes with respect to rate and/or the size of underlying primitives. For instance, instantiated with the \(1600\)-bit permutation of NIST’s SHA-3 hash function standard, it offers about \(800\)-bit security at a rate of almost 1/2, while SHA-3-512 itself achieves only \(512\)-bit security at a rate of about \(1/3\). We prove that \(S^r\) achieves asymptotically optimal collision security against semi-adaptive adversaries up to almost \(2^{n/2}\) queries and that it can be made preimage secure up to \(2^n\) queries using a simple tweak.  相似文献   

6.
Spheroidal harmonics and modified Bessel functions have wide applications in scientific and engineering computing. Recursive methods are developed to compute the logarithmic derivatives, ratios, and products of the prolate spheroidal harmonics (\(P_n^m(x)\), \(Q_n^m(x)\), \(n\ge m\ge 0\), \(x>1\)), the oblate spheroidal harmonics (\(P_n^m(ix)\), \(Q_n^m(ix)\), \(n\ge m\ge 0\), \(x>0\)), and the modified Bessel functions (\(I_n(x)\), \(K_n(x)\), \(n\ge 0\), \(x>0\)) in order to avoid direct evaluation of these functions that may easily cause overflow/underflow for high degree/order and for extreme argument. Stability analysis shows the proposed recursive methods are stable for realistic degree/order and argument values. Physical examples in electrostatics are given to validate the recursive methods.  相似文献   

7.
We study the Z(2) gauge-invariant neural network which is defined on a partially connected random network and involves Z(2) neuron variables \(S_i\) (\(=\pm \)1) and Z(2) synaptic connection (gauge) variables \(J_{ij}\) (\(=\pm \)1). Its energy consists of the Hopfield term \(-c_1S_iJ_{ij}S_j\), double Hopfield term \(-c_2 S_iJ_{ij}J_{jk} S_k\), and the reverberation (triple Hopfield) term \(-c_3 J_{ij}J_{jk}J_{ki}\) of synaptic self interactions. For the case \(c_2=0\), its phase diagram in the \(c_3-c_1\) plane has been studied both for the symmetric couplings \(J_{ij}=J_{ji}\) and asymmetric couplings (\(J_{ij}\) and \(J_{ji}\) are independent); it consists of the Higgs, Coulomb and confinement phases, each of which is characterized by the ability of learning and/or recalling patterns. In this paper, we consider the phase diagram for the case of nonvanishing \(c_2\), and examine its effect. We find that the \(c_2\) term enlarges the region of Higgs phase and generates a new second-order transition. We also simulate the dynamical process of learning patterns of \(S_i\) and recalling them and measure the performance directly by overlaps of \(S_i\). We discuss the difference in performance for the cases of Z(2) variables and real variables for synaptic connections.  相似文献   

8.
We study the following energy-efficient scheduling problem. We are given a set of n jobs which have to be scheduled by a single processor whose speed can be varied dynamically. Each job \(J_j\) is characterized by a processing requirement (work) \(p_j\), a release date \(r_j\), and a deadline \(d_j\). We are also given a budget of energy E which must not be exceeded and our objective is to maximize the throughput (i.e., the number of jobs which are completed on time). We show that the problem can be solved optimally via dynamic programming in \(O(n^4 \log n \log P)\) time when all jobs have the same release date, where P is the sum of the processing requirements of the jobs. For the more general case with agreeable deadlines where the jobs can be ordered so that, for every \(i < j\), it holds that \(r_i \le r_j\) and \(d_i \le d_j\), we propose an optimal dynamic programming algorithm which runs in \(O(n^6 \log n \log P)\) time. In addition, we consider the weighted case where every job \(J_j\) is also associated with a weight \(w_j\) and we are interested in maximizing the weighted throughput (i.e., the total weight of the jobs which are completed on time). For this case, we show that the problem becomes \(\mathcal{NP}\)-hard in the ordinary sense even when all jobs have the same release date and we propose a pseudo-polynomial time algorithm for agreeable instances.  相似文献   

9.
We revisit the batched bin packing problem. In this model, items come in K consecutive batches, and the items of the earlier batches must be packed without any knowledge of later batches. We give the first approximation algorithm for the case \(K=2\), with tight asymptotic approximation ratio of 1.5833, while the known lower bound of the model is 1.378. With the application of this result, we are also able to provide an improved algorithm for the recently defined graph-bin packing problem in a special case, where we improve the upper bound from 3 to 2.5833.  相似文献   

10.
A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of \(W^i\) (\(i=B,F\)) to \(W_s\), where \(W^\mathrm{B}\) and \(W^\mathrm{F}\) are the work done by two Bosons and Fermions, respectively, and \(W_s\) is the work output of a single particle under the same conditions. Due to the symmetrical of the wave functions, the ratios are not equal to 2. Three different regimes, low-temperature regime, high-temperature regime, and intermediate-temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of \(W^i_M/M\) to \(W_s\), where \(W^i_M/M\) can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum has the form of \(E_n\sim n^2\), the results are similar. For the case \(E_n\sim n\), two different conclusions are obtained.  相似文献   

11.
This paper aims to develop new and fast algorithms for recovering a sparse vector from a small number of measurements, which is a fundamental problem in the field of compressive sensing (CS). Currently, CS favors incoherent systems, in which any two measurements are as little correlated as possible. In reality, however, many problems are coherent, and conventional methods such as \(L_1\) minimization do not work well. Recently, the difference of the \(L_1\) and \(L_2\) norms, denoted as \(L_1\)\(L_2\), is shown to have superior performance over the classic \(L_1\) method, but it is computationally expensive. We derive an analytical solution for the proximal operator of the \(L_1\)\(L_2\) metric, and it makes some fast \(L_1\) solvers such as forward–backward splitting (FBS) and alternating direction method of multipliers (ADMM) applicable for \(L_1\)\(L_2\). We describe in details how to incorporate the proximal operator into FBS and ADMM and show that the resulting algorithms are convergent under mild conditions. Both algorithms are shown to be much more efficient than the original implementation of \(L_1\)\(L_2\) based on a difference-of-convex approach in the numerical experiments.  相似文献   

12.
13.
Based on spatial conforming and nonconforming mixed finite element methods combined with classical L1 time stepping method, two fully-discrete approximate schemes with unconditional stability are first established for the time-fractional diffusion equation with Caputo derivative of order \(0<\alpha <1\). As to the conforming scheme, the spatial global superconvergence and temporal convergence order of \(O(h^2+\tau ^{2-\alpha })\) for both the original variable u in \(H^1\)-norm and the flux \(\vec {p}=\nabla u\) in \(L^2\)-norm are derived by virtue of properties of bilinear element and interpolation postprocessing operator, where h and \(\tau \) are the step sizes in space and time, respectively. At the same time, the optimal convergence rates in time and space for the nonconforming scheme are also investigated by some special characters of \(\textit{EQ}_1^{\textit{rot}}\) nonconforming element, which manifests that convergence orders of \(O(h+\tau ^{2-\alpha })\) and \(O(h^2+\tau ^{2-\alpha })\) for the original variable u in broken \(H^1\)-norm and \(L^2\)-norm, respectively, and approximation for the flux \(\vec {p}\) converging with order \(O(h+\tau ^{2-\alpha })\) in \(L^2\)-norm. Numerical examples are provided to demonstrate the theoretical analysis.  相似文献   

14.
We consider scheduling of unit-length jobs with release times and deadlines, where the objective is to minimize the number of gaps in the schedule. Polynomial-time algorithms for this problem are known, yet they are rather inefficient, with the best algorithm running in time \(O(n^4)\) and requiring \(O(n^3)\) memory. We present a greedy algorithm that approximates the optimum solution within a factor of 2 and show that our analysis is tight. Our algorithm runs in time \(O(n^2 \log n)\) and needs only O(n) memory. In fact, the running time is \(O(n (g^*+1)\log n)\), where \(g^*\) is the minimum number of gaps.  相似文献   

15.
It is known that the n-qubit system has no unextendible product bases (UPBs) of cardinality \(2^n-1\), \(2^n-2\) and \(2^n-3\). On the other hand, the n-qubit UPBs of cardinality \(2^n-4\) exist for all \(n\ge 3\). We prove that they do not exist for cardinality \(2^n-5\).  相似文献   

16.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

17.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

18.
In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of \(O(1/\log N)\) in \(O(\sqrt{N \log N})\) steps, which with amplitude amplification yields an overall runtime of \(O(\sqrt{N} \log N)\). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4 / N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in \(O(\sqrt{N \log N})\) steps, thus yielding an \(O(\sqrt{\log N})\) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.  相似文献   

19.
In this paper, we study quantum codes over \(F_q\) from cyclic codes over \(F_q+uF_q+vF_q+uvF_q,\) where \(u^2=u,~v^2=v,~uv=vu,~q=p^m\), and p is an odd prime. We give the structure of cyclic codes over \(F_q+uF_q+vF_q+uvF_q\) and obtain self-orthogonal codes over \(F_q\) as Gray images of linear and cyclic codes over \(F_q+uF_q+vF_q+uvF_q\). In particular, we decompose a cyclic code over \(F_q+uF_q+vF_q+uvF_q\) into four cyclic codes over \(F_q\) to determine the parameters of the corresponding quantum code.  相似文献   

20.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号