首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
文章提出了一种新型的高功率因数直流电源,并对电路的主要工作原理进行了分析,介绍了电路的两种工作模态,并且作了详细的比较;通过理论演算和对电路仿真,证实了该电路具有功率因数高的特点。与目前常用的boost功率因数校正电路比较,该电路改善了开关管的电压应力,使开关管不易损坏,同时还具有结构简单,效率高,性能稳定等优点。  相似文献   

2.
介绍了三相功率因数校正电路几种主要的拓扑结构——三相单开关功率因数校正电路、三相两开关PFC电路、三相三开关PFC电路、三相四开关PFC电路等;并分析了每种拓扑结构的特性、优点以及缺点,应用MATLAB软件对其中部分电路做了仿真。  相似文献   

3.
各种严格的谐波标准的出台,推动了功率因数校正电路技术的发展。文章分析了单相功率因数校正电路技术的概况,从实现的方式及其特点等方面较系统地论述了单相有源功率因数校正电路拓扑技术近期的发展,并指出了今后单相功率因数校正电路技术的发展趋势。  相似文献   

4.
基于Matlab的交流斩波型PFC电路仿真研究   总被引:1,自引:1,他引:0  
为改善传统功率因数校正电路的不足,提出一种新型交流斩波型单相功率因数校正电路的拓扑结构,使开关管处于整流桥的交流侧.该方案有助于提升电路的谐波抑制和功率因数校正能力,可实现单位功率因数,增强电路的电磁兼容性,降低电路的传导损失.仿真结果表明,功率因数可达0.997,仿真结果验证了方案的可行性和理论分析的正确性.  相似文献   

5.
文章分析了常用Boost型和Buck-Boost型的单级功率因数校正拓扑的工作原理及其优缺点,在此基础上提出了基于电荷控制的单级功率因数校正电路拓扑,并详述了其拓扑工作过程,以及在实际应用中的优点。  相似文献   

6.
针对开关电源模拟控制存在的不足,对开关电源数字控制技术进行了前瞻性研究。讨论了实现功率因数校正的各种拓扑结构的特点和应用范围,并结合实际情况选用基于Boost电路的功率因数校正变换器,为实现数字控制对传统模拟控制的主电路拓扑结构进行了改进,对其工作原理和工作模态进行了详细分析。根据设计参数,利用Matlab对此模块进行了仿真,通过输入电压和输入电流波形的对比,表明功率因数得到提高,验证了上述研究成果的正确性和优越性。  相似文献   

7.
分析了基本电压充电泵功率因数校正电路(VS-CPPFC)的原理,并且给出了电路的工作过程和取得单位功率因数的条件,以及电路参数指导设计。通过对基本电路的不足给予分析。在基本电路基础上进行一定的改进,得到比较实用的电路拓扑结构,通过实验验证了理论分析的正确性。  相似文献   

8.
针对传统桥式整流升压功率因数校正(PFC)电路效率较低的缺点,提出了一种最小电压应力的软开关无桥PFC电路拓扑.在理论分析和仿真验证的基础上,研制了一台300 W的实验样机.结果表明,改进的无桥PFC电路拓扑具有通态损耗低、电流采样简单,能实现开关管零电压关断和零电流开通,同时实现整流二极管零电压导通和接近零电流软关断...  相似文献   

9.
王勤 《家庭电子》2011,(1):38-39
本文介绍了开关电源功率因数校正的基本原理,剖析了有源功率因数校正电路的结构、原理,对比各类APFC的特点,并概括了有源功率因数校正技术的发展方向.  相似文献   

10.
单周期控制无桥Boost PFC电路分析和仿真   总被引:5,自引:1,他引:4  
传统有源功率因数校正电路中导通器件多,通态损耗大,不适于中大功率场合应用。新颖的单相功率因数校正电路——无桥Boost拓扑,其结构简单,效率高。文中基于无桥Boost电路,提出一种单周期控制方法,它不需要检测输入电压信号且不需使用乘法器就能实现功率因数校正。单周期控制电路简单可靠,又降低了成本。文中分析了无桥Boost电路及单周期控制的工作原理,并导出了控制系统的稳定性条件。  相似文献   

11.
文章研究了一种新型单级单开关PFC反激变换器。该变换器负载变轻时其储能电容电压不会飘升,应用于宽范围交流输入电压,储能电容电压低于450V。变换器用其变压器中的一个附加绕组实现了升压功能。由于省去了大电感,减小了变换器的体积和重量,在中小功率应用场合下,变换器符合IEC61000-3-2class D谐波标准,并且具有输出电压快速调节能力。  相似文献   

12.
This article proposes a single-stage electronic ballast circuit with high-power factor. The proposed circuit was derived by sharing the switches of the power factor correction (PFC) and the half-bridge LCC resonant inverter. This integration of switches forms the proposed single-stage electronic ballast, which provides an almost unity power factor and a ripple-free input current by using a coupled inductor without increasing the voltage stress. In addition, it realises zero-voltage-switching (ZVS) by employing the self-oscillation technique. The saturable transformer constituting the self-oscillating drive limits the lamp current and dominates the switching frequency of the ballast. Therefore, the proposed single-stage ballast has the advantage of high-power factor, high efficiency, low cost and high reliability. Steady-state analysis of the PFC and the half-bridge LCC resonant inverter are described. The results of experiments performed using a 30 W fluorescent lamp are also presented to confirm the performance of the proposed ballast.  相似文献   

13.
This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.  相似文献   

14.
Improved start-up scenario for single-stage electronic ballast   总被引:1,自引:0,他引:1  
This paper presents improved start-up scenario for single-stage electronic ballast derived with a synchronous switch technique (SST). Based on the SST, the derivation of a single-stage inverter (SSI) used for realizing the ballast is then addressed. The SSI can achieve both high power factor and ballasting function. During lamp start-up transition, power imbalance may exist between the power factor correction semi-stage and the ballast semi-stage, and filament preheating is an important issue. Power imbalance usually results in a high DC-link voltage which, in turn, imposes high stress on the switching devices. Investigation of the ballast operation is conducted, from which control strategies for reducing component stresses and hot resistance detection circuits for minimizing electrode sputtering are therefore proposed. Hardware measurements have verified that on-off tests are higher than 18,000 times without significant sputtering  相似文献   

15.
大多数现代电子设备使用了开关式电源,它们会产生不希望出现的电流谐波,这些谐波对供电品质和与该电源系统连接的其他设备造成了不良影响。文章介绍了有源功率因数校正的工作原理,提出了基于L6563芯片的一种高功率因数校正电路方案。试验结果表明,该Boost功率因数校正电路设计合理,性能可靠,功率因数可达0.99,可有效改善电源品质。  相似文献   

16.
开关电容boost—buck功率因数校正组合开关变换器   总被引:1,自引:0,他引:1  
程红丽 《微电子学》2001,31(5):351-353,359
文章提出了一种基于开关电容网络的boost-buck组合开关变换器,当其输入环节工作在不连续导电模式(DCM)时,具有功率因数校正(PFC)功能,详细分析了这类变换器的工作原理、临界条件、输入输出电压变比以及各器件的应力。实验结果与理论分析相符。  相似文献   

17.
两级功率因数校正(PFC)变换器因其较高的功率因数而广泛应用于功率因数校正场合。近年来,随着PFC/PWM复合控制芯片的应用,两级功率因数校正技术得到了很大的发展。传统两级PFC采用后缘/后缘调制方法(Trailing Edge Modulation/Trailing Edge Modulation,TEM/TEM)。而现今广泛使用前缘/后缘调制方法(Leading Edge Modulation/Trailing Edge Modulation,LEM/TEM)可有效减小流经连接前级PFC和后级DC/DC阶段的直直连接电容的电流有效值,但尚未有详细的理论推导。文章在两种调制方法下对流经直直连接电容的电流有效值进行了详细的理论分析,并给出了仿真验证。最后,利用复合控制芯片ML4803设计了一台具有功率因数校正功能的两级PFC变换器,对理论仿真分析进行了实验验证。  相似文献   

18.
三电平三相单极性功率因数校正电路的研究   总被引:1,自引:0,他引:1  
介绍了一种新型的三电平三相单极性PFC的AC/DC变换电路,阐述了其电路的工作原理,分析了电路的工作过程和功率因数校正原理,并给出了电路的试验结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号