首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the North Atlantic Oscillation (NAO) simulated by 17 global coupled ocean-atmosphere models participating in the Coupled Model Intercomparison Project (CMIP). Robust NAO indices are defined by calculating the leading principal components of winter time mean surface temperatures (land and sea) in the North Atlantic region (120°W-60°E, 20-80°N). Encouragingly, 13 out of 17 of the models capture the NAO surface temperature quadrupole pattern with centres of action over Northwest Europe, the northwest Atlantic, the southeastern USA, and the Middle East. The northern dipole is better captured than the southern dipole which is often simulated too far eastwards over the Atlantic Ocean. Out of the 17 models, ten models produce NAO indices that vary similar to the observations as stationary "weakly red noise" with only small correlations between successive winters (r < 0.3). Another five models drift monotonically towards warmer conditions, and two models exhibit long-term stochastic trends. Several of the models significantly overestimate the teleconnection between NAO and the tropical ENSO phenomenon.  相似文献   

2.
3.
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.  相似文献   

4.
The time-dependent variability of the North Atlantic Oscillation is examined in an observational data set and several model data sets with greenhouse-gas-induced external forcings. The index of the North Atlantic Oscillation state is derived from the time series of mean latitudinal position and central pressure of the Icelandic Low and the Azores High considering the synchronous meridional shifting of the two pressure systems. While the North Atlantic Oscillation is characterized by intensive interannual variability, the low-pass filtered index time series shows a decadal component with a time scale of about 50 y within almost 120 y of observation. Since the late 1960s we observe a positive trend and a transition to a strong positive phase of the phenomenon indicative of a pre-dominantly zonal circulation over the North Atlantic. This trend occurs equally in the observations and all examined model data sets with increasing greenhouse-gas-concentration and atmosphere-ocean coupling. We find statistical evidence that the radiative forcing by increasing CO2 concentration has a significant influence on the simulated variability of the North Atlantic Oscillation on time scales of 60 y and longer, independent of the initial conditions and the model version. The seasonal response is strongest in late summer and winter. The interannual variability of the North Atlantic Oscillation states on time scales less than 10 y decreases synchronously with the positive trend of its decadal-mean state implying a stabilization of its present and future zonal state. Received: 4 January 1999 / Accepted: 16 June 1999  相似文献   

5.
Summary The result of a 100-year integration of a coupled ocean-atmosphere general circulation model (CGCM) is analyzed, and compared with that of a 25-year integration of the corresponding uncoupled atmospheric general circulation model (AGCM) and observed data. The large-scale circulation patterns of mean climate state simulated by the CGCM are in good agreement with the observed ones, although differences exit in the positions and intensities between the simulated and the observed patterns. Having compared the standard deviations of monthly mean sea level pressure simulated by the CGCM to those by the AGCM, we found that the interaction between ocean and atmosphere mainly increases the interannual variability in the tropics especially in summer. The CGCM can also produce El Niño and Southern Oscillation (ENSO) events, whereas the AGCM cannot reproduce the main features of the Southern Oscillation. This implies that the air-sea interaction may be a principal mechanism for the occurrence of ENSO phenomena. The fundamental features of simulated regional climates are also analyzed. The CGCM can reproduce principal characteristics of surface air temperature and precipitation at five selected typical regions (desert region, plain region, monsoon region etc.). The distributions of annual mean surface ait temperature and precipitation in East Asia can also be reasonably simulated.With 9 Figures  相似文献   

6.
北美偶极子(NAD)是热带北大西洋西部和北美东北部的南北向海平面气压异常偶极型模态.以往的观测研究表明,NAD可以有效地影响ENSO事件的爆发.本文利用全球耦合模式FGOALS-g2,评估了NAD与ENSO的关系.结果表明,该模式能较好地重现NAD模态.进一步的分析验证了冬季NAD可以通过强迫冬末春初副热带东北太平洋上空的反气旋和暖海温的出现,在随后的冬季触发El Ni?o事件.此外,在同化NAD实验中,发生El Ni?o事件的概率增加了将近一倍.相比之下,NAO未能在副热带东北太平洋上空引起表面风和海温的异常,因而不能有效地激发次年冬季ENSO事件.  相似文献   

7.
8.
Goosse  H.  Selten  F.  Haarsma  R.  Opsteegh  J. 《Climate Dynamics》2003,20(5):523-536
Climate Dynamics - The processes leading to the formation of a large anomaly of sea-ice volume integrated over the Northern Hemisphere have been investigated in a coarse-resolution...  相似文献   

9.
A 1000 year integration of the CSIRO coupled ocean-atmosphere general circulation model is used to study low frequency (decadal to centennial) climate variability in precipitation and temperature. The model is shown to exhibit sizeable decadal variability for these fields, generally accounting for approximately 20 to 40% of the variability (greater than one year) in precipitation and up to 80% for temperature. An empirical orthogonal function (EOF) analysis is applied to the model output to show some of the major statistical modes of low frequency variability. The first EOF spatial pattern looks very much like that of the interannual ENSO pattern. It bears considerable resemblance to observational estimates and is centred in the Pacific extending into both hemispheres. It modulates both precipitation and temperature globally. The EOF has a time evolution that appears to be more than just red noise. Finally, the link between SST in the Pacific with Australian rainfall variability seen in observations is also evident in the model. Received: 29 August 1998 / Accepted: 31 July 1999  相似文献   

10.
Luo  Hao  Zheng  Fei  Keenlyside  Noel  Zhu  Jiang 《Climate Dynamics》2020,54(11):4759-4773
Climate Dynamics - Currently, the mechanisms for Pacific Decadal Oscillation (PDO) are still disputed, and in particular the atmosphere response to the ocean in the mid-latitude remains a key...  相似文献   

11.
瞬变天气涡旋对北大西洋涛动的增强效应   总被引:1,自引:2,他引:1  
使用NCEP/NCAR再分析资料计算了冬季北大西洋瞬变涡旋活动强度与北大西洋涛动(NAO)逐日指数的时间序列,结果发现:当涡旋活动强度出现峰值后会伴随NAO模态增强现象;而随着NAO的增强,涡旋能量同落.为了判断是否涡流相互作用将天气尺度的能量转换为低频尺度的能量,使用瞬变涡度通量来研究涡度与能量的传输.通过分析瞬变涡...  相似文献   

12.
The interaction between climate and vegetation along four Pole-Equator-Pole (PEP) belts were explored using a global two-way coupled model, AVIM-GOALS, which links the ecophysiological processes at the land surface with the general circulation model (GCM). The PEP belts are important in linking the climate change with the variation of sea and land, including terrestrial ecosystems. Previous PEP belts studies have mainly focused on the paleoclimate variation and its reconstruction. This study analyzes and discusses the interaction between modern climate and vegetation represented by leaf area index (LAI) and net primary production (NPP). The results show that the simulated LAI variation, corresponding to the observed LAI variation, agrees with the peak-valley variation of precipitation in these belts. The annual mean NPP simulated by the coupled model is also consistent with PIK NPP data in its overall variation trend along the four belts, which is a good example to promote global ecological studies by coupling the climate and vegetation models. A large discrepancy between the simulated and estimated LAI emerges to the south of 15°N along PEP 3 and to the south of 18°S in PEP 1S, and the discrepancy for the simulated NPP and PIK data in the two regions is relatively smaller in contrast to the LAI difference. Precipitation is a key factor affecting vegetation variation, and the overall trend of LAI and NPP corresponds more obviously to precipitation variation than temperature change along most parts of these PEP belts.  相似文献   

13.
李斐斐  徐彩艳 《气象学报》2023,81(1):124-136
北大西洋涛动作为冬季北大西洋地区大气环流的主模态之一,其年际变率对全球许多地区气候变率具有重要影响,但目前其预测技巧并不高。采用降维投影四维变分同化方法,在耦合模式中建立了基于全球大气资料的弱耦合资料同化系统,直接同化月平均再分析资料,并进行了年代际后报试验。结果表明,通过耦合资料同化的手段,可以显著提升耦合模式对冬季北大西洋涛动年际变率及其相关的欧洲北部、美国东部、欧亚大陆北部的冬季近地面温度年际变率的后报效果,相关系数均超过0.05显著水平t检验。该后报效果的改进主要与在耦合同化过程中通过耦合模式中自由发展的海-气相互作用将大气的观测信息储存在耦合模式的海洋分量中,改进了冬季北大西洋地区海表温度“三极”型分布的时空变率及其时间序列的后报效果有关。该研究强调了耦合模式初始状态的准确度对提升冬季北大西洋涛动年际变率的后报技巧具有重要作用。  相似文献   

14.
夏季亚洲-太平洋涛动的耦合模式模拟   总被引:1,自引:0,他引:1  
亚洲-太平洋涛动是夏季欧亚大陆东部(15°—50°N,60°—120°E)与北太平洋上空(15°—50°N,180°—120°W)温度场反相变化的现象。亚洲-太平洋涛动指数由对流层上层(500—200 hPa)温度定义,反映了亚洲-太平洋纬向热力差异。基于一个全球海-气耦合模式FGOALS_gl的20世纪气候模拟试验结果,讨论了其对20世纪亚洲-太平洋涛动指数变化的模拟能力。结果表明,较之ERA-40再分析资料(1960—1999年),模式很好地刻画出上层温度场的平均态和主导模态的空间型。从趋势上看,模式对北太平洋上空温度的年代际变化和趋势模拟较好,但未能模拟出亚洲东部陆地上空的降温趋势。从频谱分析结果看,模拟的亚洲-太平洋涛动指数2—3,a的年际变率与再分析资料相当,5-7 a周期的变率较弱。模式能够较好地模拟出与亚洲-太平洋涛动指数相关的亚洲季风区气候异常。在20世纪模拟中,外强迫因子会改变耦合系统的年际变率,在自然因子强迫下亚洲-太平洋涛动指数的功率谱向低频方向增强,人为强迫因子的作用则相反。自然强迫因子和人为强迫因子在不同时期对亚洲-太平洋涛动年际和年代际变率的作用不同。在年际变率中人为强迫因子能够控制亚洲-太平洋涛动的变率使其不致过大;在年代际变率中人为强迫因子会增强自然强迫下亚洲-太平洋涛动的变率。模式上层温度的主导模态受ENSO调制,可能影响亚洲-太平洋涛动的年际变率。因此,模式对ENSO模拟能力的缺陷是制约模式对流层上层温度及亚洲-太平洋涛动指数变率的重要因素。  相似文献   

15.
In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.  相似文献   

16.
Large ensembles of simulations (ensemble size of 500 members) are performed using a simplified atmospheric general circulation model (AGCM) in order to investigate the non-linearities in the response to composite sea surface temperature (SST) anomaly forcings that are constant in time. The SST composite corresponds to the observed anomaly associated with the atmospheric North Atlantic Oscillation (NAO). The integration length is 90 days for each ensemble (covering January, February and March). A non-linearity is found in the mean response to the SST-forcing, with the negative SST-NAO forcing leading to a stronger and more clear atmospheric NAO response. These non-linearities appear to be due to asymmetries in the heating anomalies induced by the SST-forcing and asymmetries in the transient eddy vorticity forcing. Further non-linearities are due to initial period dependences of the response to the same SST-forcing. As a consequence, a pre-existing negative atmospheric NAO is much more persistent due to SST-feedback than a positive NAO.  相似文献   

17.
The El Niño-Southern Oscillation (ENSO) is investigated in a multicentury integration conducted with the coupled general circulation model (CGCM) ECHAM3/LSG. The quasiperiodic interannual oscillations of the simulated equatorial Pacific climate system are due to subsurface temperature anomaly propagation and a positive atmosphere-ocean feedback. The gravest internal wave modes contribute to the generation of these anomalies. The simulated ENSO has a characteristic period of 5–8 years. Due to the coarse resolution of the ocean model the ENSO amplitude is underestimated by a factor of three as compared to observations. The model ENSO is associated with the typical atmospheric teleconnection patterns. Using wavelet statistics two characteristic interdecadal modulations of the ENSO variance are identified. The origins of a 22 and 35?y ENSO modulation as well as the characteristic ENSO response to greenhouse warming simulated by our model are discussed.  相似文献   

18.
根据北极涛动和北大西洋涛动指数的时间序列,选取两者差异较大的13个年份进行合成分析。结果表明:除北太平洋地区外,北极涛动与北大西洋涛动差异最显著的区域是西欧-地中海区域和亚洲东北部地区。北极涛动高指数阶段,对流层中层为纬向二波的驻波型,分别对应于极地-欧亚遥相关型和太平洋-北美遥相关型。同时,纬向平均纬向风偶极型使西风急流向极地偏移,与增强的中纬度经圈环流相互作用,引导对流层上层异常信号向下传播,形成高低空耦合机制。进一步分析发现,这种中纬度经圈环流异常和高低空耦合形势的差异主要表现在欧亚大陆地区;在北大西洋区域差异并不显著。  相似文献   

19.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

20.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号