首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The aim of this paper is to review the energy situation, renewable energy potential and absorption chiller system in Thailand. The renewable energy which will be used in low temperature applications, under the consideration of low operating cost, high availability and non-polluted emission such as solar energy was discussed. Solar energy can be used as power sources for cooling systems, especially for the absorption chiller. Thailand is located in the area where the solar intensity is very high and thus solar energy can be used as power sources. The absorption chiller using water/lithium bromide is the most appropriate for the solar applications. This system, however, is not widely used in Thailand due to its complexity, high toxicity caused by leakage and high initial cost. The utilization of absorption chiller may increase if more researches focus on the development of this cooling system, which is driven by solar energy. This may results in a substantial decrease in electricity consumption.  相似文献   

2.
Solar energy is accessible throughout the year in tropical regions. The latest development of absorption chillers has demonstrated that these systems are suitable for effective use of solar energy. The utilisation of solar energy for heat-driven cooling systems has significant advantages. Without a doubt, solar energy represents a clean energy source that is available without any additional fuel cost, and that can be proportionally accessible when the cooling load increases during the middle hours of the day. This study focuses on a single-double-effect absorption chiller machine that was installed in Indonesia. The system is driven by a dual-heat source that combines gas and solar energy. This system is characterised by simulating its performance in various conditions in terms of the cooling water (28–34 °C) and the hot water (75–90 °C) inlet temperatures. The reference operating condition of this system is 239 kW of cooling capacity. The mathematical model is validated and shows a good agreement with experimental data. In the operative range considered, simulation results yield a coefficient of performance between 1.4 and 3.3, and a gas reduction ratio from 7 to 58% when compared to a double-effect absorption chiller driven by gas. Based on the simulation results, this system is expected to have a good potential for widespread use in tropical Asia regions.  相似文献   

3.
A lumped parameter model of a silica gel-water adsorption chiller driven by solar energy was introduced for the operating characteristics investigation. Matlab-Simulink, as a high-performance computing and programming tool, was used to simulate the operating characteristics of the chiller. Effects of the hot water tank capacity, the cycle time and the initial hot water temperature on the performance of the chiller were analyzed when the chiller was driven by a stable heat source and solar energy respectively. The simulation results indicated that when the chiller was driven by solar energy, the open circulation of the hot water with a short cycle time and the closed circulation of hot water with a longer cycle time were better. A proposal was also provided for the chiller driven by solar energy to work under the optimum working conditions, such as hot water circulation mode, cycle time and initial temperature.  相似文献   

4.
Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature.  相似文献   

5.
A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy consumption of the solar hybrid cooling system was lower than that of the conventional vapour compression refrigeration system up to 36.5%. Between the two options of chilled ceilings, the passive chilled beams were more energy-efficient to work with the solar hybrid cooling system in the hot and humid climate. Harnessing solar energy for driving air-conditioning would help in reducing the carbon emission, hence alleviating the climate change.  相似文献   

6.
In this study, a lumped parameter simulation model has been developed for analysis of the thermal performance of a single-stage two-bed adsorption chiller. Since silica gel has low regeneration temperature and water has high latent heat of vaporisation, silica gel–water pair has been chosen as the working pair of the adsorption chiller. Low-grade waste heat or solar heat at around 70–80°C can be used to run this adsorption chiller. In this model, the effects of operating parameters on the performance of the chiller have been studied. The simulated results show that the cooling capacity of the chiller has an optimum value of 5.95?kW for a cycle time of 1600?s with the hot, cooling, and chilled water inlet temperatures at 85°C, 25°C, and 14°C, respectively. The present model can be utilised to investigate and optimise adsorption chillers.  相似文献   

7.
Solar thermal driven cooling systems for residential applications are a promising alternative to electric compression chillers, although its market introduction still represents a challenge, mainly due to the higher investment costs. The most common system configuration is an absorption chiller driven by a solar thermal system, backed up by a secondary heating source, normally a gas boiler. Heat storage in the primary (solar) circuit is mandatory to stabilize and extend the operation of the chiller, whereas a cold storage tank is not so common.This paper deals with the selection of the most suitable configuration for residential cooling systems with solar energy. In Spain, where cooling needs are usually higher than heating needs, the interest of a reversible heat pump as auxiliary system and a secondary cooling storage are analyzed.A complete TRNSYS model has been developed to compare a configuration with just hot storage (of typical capacity 40 L/m2 of solar collector surface) and a configuration with both, hot and cool storages. The most suitable configuration is very sensible to the solar collector area. As the collector area increases, the advantages of a cool storage vanish. Increasing the collector area tends to increase the temperature of the hot storage, leading to higher thermal losses in both the collector and the tank. When the storage volume is concentrated in one tank, these effects are mitigated. The effect of other variables on the optimal configuration are also analyzed: collector efficiency curve, COP of the absorption chiller, storage size, and temperature set-points of the chillers.  相似文献   

8.
One two-phase thermo-syphon silica gel-water solar adsorption chiller and LiBr-H2O absorption chiller with new medium CPC (Compound Parabolic Concentrator) solar collectors were investigated. The reliability of adsorption chiller can be improved, because there is only one vacuum valve in this innovative design. Medium temperature evacuated-tube CPC solar collectors were firstly utilized in the LiBr-H2O air conditioning system. The former system was applied in north of China at Latitude 37.45° (Dezhou city, China), the latter system was applied at Latitude 36.65° (Jinan city, China). Experimental results showed that the adsorption chiller can be powered by 55 °C of hot water. The adsorption chiller can provide 15 °C of chilled water from 9:30 to 17:00, the average solar COP (COPs) of the system is 0.16. In the absorption cooling system, the efficiency of the medium temperature evacuated-tube CPC solar collector can reach 0.5 when the hot water temperature is 125 °C. The absorption chiller can provide 15 °C of chilled water from 11:00 to 15:30, and the average solar COPs of absorption system is 0.19.  相似文献   

9.
P. Lin  R.Z. Wang  Z.Z. Xia 《Renewable Energy》2011,36(5):1401-1412
Two-stage air-cooled ammonia–water absorption refrigeration system could make good use of low-grade solar thermal energy to produce cooling effect. The system simulation results show that thermal COP is 0.34 and electrical COP is 26 under a typical summer condition with 85 °C hot water supplied from solar collector. System performances under variable working conditions are also analyzed. Circular finned tube bundles are selected to build the air-cooled equipment. The condenser should be arranged in the front to get an optimum system performance. The mathematical model of the two-stage air-cooled absorber considering simultaneous heat and mass transfer processes is developed. Low pressure absorber should be arranged in front of middle pressure absorber to minimize the absorption length. Configuration of the air-cooled equipment is suggested for a 5 kW cooling capacity system. Temperature and concentration profiles along the finned tube length show that mass transfer resistance mainly exists in liquid phase while heat transfer resistance mainly exists in cooling air side. The impacts on system refrigeration capacities related to absorption behaviors under variable working conditions are also investigated. Both cycle analysis and absorption performances show that two-stage air-cooled ammonia–water absorption chiller is technically feasible in practical solar cooling applications.  相似文献   

10.
《Applied Thermal Engineering》2002,22(12):1313-1325
In this paper the modelling, simulation and total equivalent warming impact (TEWI) of a domestic-size absorption solar cooling system is presented. The system consists of a solar collector, storage tank, a boiler and a LiBr–water absorption refrigerator. Experimentally determined heat and mass transfer coefficients were employed in the design and costing of an 11 kW cooling capacity solar driven absorption cooling machine which, from simulations, was found to have sufficient capacity to satisfy the cooling needs of a well insulated domestic dwelling. The system is modelled with the TRNSYS simulation program using appropriate equations predicting the performance of the unit. The final optimum system consists of 15 m2 compound parabolic collector tilted at 30° from horizontal and 600 l hot water storage tank. The total life cycle cost of a complete system, comprising the collector and the absorption unit, for a lifetime of 20 years will be of the order of C£ 13,380. The cost of the absorption system alone was determined to be C£ 4800. Economic analysis has shown that for such a system to be economically competitive compared to conventional cooling systems its capital cost should be below C£ 2000. The system however has a lower TEWI being 1.2 times smaller compared to conventional cooling systems.  相似文献   

11.
《Applied Thermal Engineering》2007,27(10):1686-1692
The performance of an advanced adsorption chiller, namely, ‘reheat two-stage’ has been investigated experimentally in the present study. The performances in terms of specific cooling power (SCP) and COP are compared with those of conventional single and two-stage chiller. Results show that the reheat two-stage chiller provides more SCP values than those provided by conventional single-stage chiller while it provides better COP values for relatively low heat source temperature. The reheat two-stage chiller also provides almost same cooling capacity comparing with two-stage chiller for the low temperature heat source, while it provides higher COP value than that provided by two-stage chiller. Experimental results also show that the overall performance of the reheat two-stage chiller is always higher than that of conventional single and two-stage adsorption cycle even the temperature of the heat source is fluctuated between 55 and 80 °C.  相似文献   

12.
A technical and economical study of regenerative absorption chillers with multi-pressure cycle has been undertaken as solar operated refrigeration systems. Referred to as advanced absorption chillers they represent one of the new technology options that are under development. Advanced absorption cooling technology offers the possibility of chillers with thermal COPs of 1.5 or greater at driving temperatures of 140°C, which reduces the collector area and the heat rejection requirements compared to current absorption cooling technology. Two different absorption systems have been considered. The first is an advanced, double-effect regenerative absorption cooling system, driven at 140°C, whose efficiency is about 55% of the Carnot efficiency. The second is an ideal, single-effect regenerative absorption system that achieves 70% of the Carnot efficiency driven at 140°C or 200°C. To evaluate the solar performance of a thermally driven chiller requires a separate analysis of the solar availability for a given location compared to the required monthly average solar input. In this analysis different systems, including the vapour compression chillers, have been compared in terms of the thermal and electrical energy input. An effective electrical COP may be computed assuming that the ratio of electrical energy cost to thermal energy cost is four, which is typical of today’s fossil fuel costs. The effective electrical COPs of different technical options can then be compared. Those systems with higher electrical COPs will have lower energy costs. If solar is to be competitive, then the cost of delivered solar thermal energy should be less than the cost of delivered fossil thermal energy.  相似文献   

13.
A solar-powered adsorption chiller with heat and mass recovery cycle was designed and constructed. It consists of a solar water heating unit, a silica gel-water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller includes two identical adsorption units and a second stage evaporator with methanol working fluid. The effects of operation parameter on system performance were tested successfully. Test results indicated that the COP (coefficient of performance) and cooling power of the solar-powered adsorption chiller could be improved greatly by optimizing the key operation parameters, such as solar hot water temperature, heating/cooling time, mass recovery time, and chilled water temperature. Under the climatic conditions of daily solar radiation being about 16–21 MJ/m2, this solar-powered adsorption chiller can produce a cooling capacity about 66–90 W per m2 collector area, its daily solar cooling COP is about 0.1–0.13.  相似文献   

14.
太阳能吸收式空调及供热系统的设计和性能   总被引:48,自引:6,他引:42  
一套太阳能吸收式空调及供热综合系统已在山东省乳山市建成。该系统由热管式真空管集热器、溴化锂吸收式制冷机、储水箱、循环、冷却塔、空调箱、辅助燃油锅炉和自动控制系统等内部分组成,具有夏季制冷、冬季供热和全年提供生活用热水等功能。太阳能集热器总采光面积540m∧2,制冷、供热功率100kW,空调、采暖建筑面积1000m∧2供生活用热水量32m∧3/d。文中着重介绍了系统的设计特点和测试性能。  相似文献   

15.
This paper presents a systematic energetic, economical, and environmental assessment on a solar cooling system for a medium-sized office building in Los Angeles, California by means of system modeling. The studied solar cooling system primarily consists of evacuated tube solar collectors, a hot water storage tank, a single-effect LiBr–H2O absorption chiller, and a gas-fired auxiliary heater. System performance optimization and sensitivity analysis were conducted by varying two major parameters (i.e. storage tank volume and collector area). The results suggest that a trade-off exists between economic performance indicated by the equivalent uniform annual cost (EUAC) and the energetic/environmental performance indicated by the solar fraction and CO2 reduction percentage, respectively. The cost of carbon footprint reduction was defined and served as an indicator for the overall system performance. Based on this indicator, the optimal system design could be found for a solar cooling system. The approach adapted in this study can be applied to other buildings located in different climate zones to reveal the cost and benefits of solar cooling technologies and facilitate decision-making.  相似文献   

16.
A solar-driven 10-ton LiBr/H2O single-effect absorption cooling system has been designed and installed at the School of Renewable Energy Technology (SERT), Phitsanulok, Thailand. Construction took place in 2005, after which this system became fully operational and has been supplying cooling for our main testing building's air-conditioning. Data on the system's operation were collected during 2006 and analyzed to find the extent to which solar energy replaced conventional energy sources. Here, we present these data and show that the 72 m2 evacuated tube solar collector delivered a yearly average solar fraction of 81%, while the remaining 19% of thermal energy required by the chiller was supplied by a LPG-fired backup heating unit. We also show that the economics of this cooling system are dominated by the initial cost of the solar collector array and the absorption chiller, which are significantly higher than that of a similar-size conventional VCC system.  相似文献   

17.
A novel silica gel–water adsorption chiller (driven by hot water of 60–90 °C) with three vacuum chambers has been built in Shanghai Jiao Tong University (SJTU). This chiller was an improvement of an earlier deigned chiller and it integrated two single-bed systems (basic system) with only one vacuum valve. The performance of the chiller was tested and compared with the former adsorption chiller. The results show that the cooling power and COP of the chiller are 8.70 kW and 0.39 for the heat source temperature of 82.5 °C, cooling water temperature of 30.4 °C and chilled water outlet temperature of 12 °C. For a higher chilled water outlet temperature of about 16 °C, the COP increases to 0.43 while the cooling power is about 11.0 kW. Compared with that of the former chiller, the COP of this chiller increases by 20%.  相似文献   

18.
曾海平 《节能技术》2009,27(5):448-450
根据别墅建筑的特点,建立一套太阳能与小型溴化锂吸收式制冷机相结合的制冷/热泵系统。该系统可为别墅建筑实现夏季制冷、冬季供暖以及全年提供生活用热水多项功能。介绍了整个系统的形式及其工作原理以及如何选择太阳能集热器和吸收式制冷机,并指出了系统的初投资较高、系统效率较低等不足;建议了提高制冷机制冷系数的措施以提高系统的总效率。  相似文献   

19.
用于太阳能空调的板型溴化锂吸收式制冷机   总被引:3,自引:1,他引:3  
溴化锂吸收式制冷循环用于太阳能空调需要解决的主要问题是循环系统要适合集热器所能提供的热水温度范围,和提高溴冷机本身性能并降低其制造成本。板型(包括板壳式、板式、板翅式)换热器用于溴冷机具有效率高、结构紧凑、轻巧和成本较低等优点,已被本课题组研制的1台3kW板型单效溴冷机实验样机所证实。  相似文献   

20.
The present study deals with a small-scale solar-assisted absorption cooling system having a cooling capacity of 3.52 kW and was investigated experimentally under the climatic conditions of Taxila, Pakistan. Initially, a mathematical model was developed for LiBr/H2O vapor absorption system alongside flat-plate solar thermal collectors to achieve the required operating temperature range of 75°C. Following this, a parametric analysis of the whole system was performed, including various design and climate parameters, such as the working temperatures of the generator, evaporator, condenser, absorber, mass flow rate, and coefficient of performance (COP) of the system. An experimental setup was coupled with solar collectors and instruments to get hot water using solar energy and measurements of main parameters for real-time performance assessment. From the results obtained, it was revealed that the maximum average COP of the system achieved was 0.70, and the maximum outlet temperature from solar thermal collectors was 75°C. A sensitivity analysis was performed to validate the potential of the absorption machine in the seasonal cooling demand. An economic valuation was accomplished based on the current cost of conventional cooling systems. It was established that the solar cooling system is economical only when shared with domestic water heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号