首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The technological differences between traditional robotics and soft robotics have an impact on all of the modeling tools generally in use, including direct kinematics and inverse models, Jacobians, and dynamics. Due to the lack of precise modeling and control methods for soft robots, the promising concepts of using such design for complex applications (medicine, assistance, domestic robotics, etc.) cannot be practically implemented. This paper presents a first unified software framework dedicated to modeling, simulation, and control of soft robots. The framework relies on continuum mechanics for modeling the robotic parts and boundary conditions like actuators and contacts using a unified representation based on Lagrange multipliers. It enables the digital robot to be simulated in its environment using a direct model. The model can also be inverted online using an optimization-based method which allows to control the physical robots in the task space. To demonstrate the effectiveness of the approach, we present various soft robots scenarios including ones where the robot is interacting with its environment. The software has been built on top of SOFA, an open-source framework for deformable online simulation and is available at https://project.inria.fr/softrobot/.  相似文献   

2.
In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available.  相似文献   

3.
In this paper we introduce a framework to represent robot task plans based on Petri nets. Our approach enables modelling a robot task, analysing its qualitative and quantitative properties and using the Petri net representation for actual plan execution. The overall model is obtained from the composition of simple models, leading to a modular approach. Analysis is applied to a closed loop between the robot controller and the environment Petri net models. We focus here on the quantitative properties, captured by stochastic Petri net models. Furthermore, we introduce a method to identify the environment and action layer parameters of the stochastic Petri net models from real data, improving the significance of the model. The framework building blocks and a single-robot task model are detailed. Results of a case study with simulated soccer robots show the ability of the framework to provide a systematic modelling tool, and of determining, through well-known analysis methods for stochastic Petri nets, relevant properties of the task plan applied to a particular environment.  相似文献   

4.
5.
Grasping is a fundamental skill for robots which work for manipulation tasks. Grasping of unknown objects remains a big challenge. Precision grasping of unknown objects is even harder. Due to imperfection of sensor measurements and lack of prior knowledge of objects, robots have to handle the uncertainty effectively. In previous work (Chen and Wichert 2015), we use a probabilistic framework to tackle precision grasping of model-based objects. In this paper, we extend the probabilistic framework to tackle the problem of precision grasping of unknown objects. We first propose an object model called probabilistic signed distance function (p-SDF) to represent unknown object surface. p-SDF models measurement uncertainty explicitly and allows measurement from multiple sensors to be fused in real time. Based on the surface representation, we propose a model to evaluate the likelihood of grasp success for antipodal grasps. This model uses four heuristics to model the condition of force closure and perceptual uncertainty. A two step simulated annealing approach is further proposed to search and optimize a precision grasp. We use the object representation as a bridge to unify grasp synthesis and grasp execution. Our grasp execution is performed in a closed-loop, so that robots can actively reduce the uncertainty and react to external perturbations during a grasping process. We perform extensive grasping experiments using real world challenging objects and demonstrate that our method achieves high robustness and accuracy in grasping unknown objects.  相似文献   

6.
Semantic Mapping Using Mobile Robots   总被引:1,自引:0,他引:1  
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.  相似文献   

7.
In our research we examine and use 3D representation of industrial processes, for example the novel methods of Incremental Sheet Forming. We also test 3D imaging methods on our industrial robot solving the Rubik's Cube. We have created 3D models of our robots and their environment in our laboratory to examine the behavior of different industrial processes both in the real, and in the 3D virtual environment. We have connected the 3D model with the real system with which we could extend the features of our robots with some services that exits in the virtual space. We have also established synchronized connections of the real and virtual systems, which enables us to control the real robots and machines from its 3D model via the Internet.  相似文献   

8.
One important design decision for the development of autonomously navigating mobile robots is the choice of the representation of the environment. This includes the question of which type of features should be used, or whether a dense representation such as occupancy grid maps is more appropriate. In this paper, we present an approach which performs SLAM using multiple representations of the environment simultaneously. It uses reinforcement to learn when to switch to an alternative representation method depending on the current observation. This allows the robot to update its pose and map estimate based on the representation that models the surrounding of the robot in the best way. The approach has been implemented on a real robot and evaluated in scenarios, in which a robot has to navigate in- and outdoors and therefore switches between a landmark-based representation and a dense grid map. In practical experiments, we demonstrate that our approach allows a robot to robustly map environments which cannot be adequately modeled by either of the individual representations.  相似文献   

9.
This article presents a cooperative approach for tracking a moving spherical object in 3D space by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball, including comparison with ground truth.  相似文献   

10.
针对3维人脸重建问题提出了一种新颖的多视图体重建方法,以解决目前3维人脸重建方法只适用于小样本集合,大范围推广时精度难以保证的弱点。该方法创新之处在于将基于特征点匹配的重建方法与立体重建方法结合引入到图割优化框架,并应用于3维人脸重建。本文两个重要改进工作是设计动态片结构描述来进行颜色一致性估计以及设计新的动态图结构以去除半个体素尺寸的重建误差。实验中分别采用8张、16张和30张存在亮度变化的人脸多视角图像验证算法。实验结果逼真,同时避免了传统重建方法结果受限于样本集分布的问题。  相似文献   

11.
We introduce an image‐based representation, called volumetric billboards, allowing for the real‐time rendering of semi‐transparent and visually complex objects arbitrarily distributed in a 3D scene. Our representation offers full parallax effect from any viewing direction and improved anti‐aliasing of distant objects. It correctly handles transparency between multiple and possibly overlapping objects without requiring any primitive sorting. Furthermore, volumetric billboards can be easily integrated into common rasterization‐based renderers, which allows for their concurrent use with polygonal models and standard rendering techniques such as shadow‐mapping. The representation is based on volumetric images of the objects and on a dedicated real‐time volume rendering algorithm that takes advantage of the GPU geometry shader. Our examples demonstrate the applicability of the method in many cases including levels‐of‐detail representation for multiple intersecting complex objects, volumetric textures, animated objects and construction of high‐resolution objects by assembling instances of low‐resolution volumetric billboards.  相似文献   

12.
We present a new approach to model 2D surfaces and 3D volumetric data, as well as an approach for non-rigid registration; both are developed in the geometric algebra framework. The approach for modeling is based on marching cubes idea using however spheres and their representation in the conformal geometric algebra; it will be called marching spheres. Note that before we can proceed with the modeling, it is needed to segment the object we are interested in; therefore, we include an approach for image segmentation, which is based on texture and border information, developed in a region-growing strategy. We compare the results obtained with our modeling approach against the results obtained with other approach using Delaunay tetrahedrization, and our proposed approach reduces considerably the number of spheres. Afterward, a method for non-rigid registration of models based on spheres is presented. Registration is done in an annealing scheme, as in Thin-Plate Spline Robust Point Matching (TPS-RPM) algorithm. As a final application of geometric algebra, we track in real time objects involved in surgical procedures.
Jorge Rivera-RoveloEmail:
  相似文献   

13.
14.
The efficient coordination of a team of heterogeneous robots is an important requirement for exploration, rescue, and disaster recovery missions. In this paper, we present a novel approach to target assignment for heterogeneous teams of robots. It goes beyond existing target assignment algorithms in that it explicitly takes symbolic actions into account. Such actions include the deployment and retrieval of other robots or manipulation tasks. Our method integrates a temporal planning approach with a traditional cost-based planner. The proposed approach was implemented and evaluated in two distinct settings. First, we coordinated teams of marsupial robots. Such robots are able to deploy and pickup smaller robots. Second, we simulated a disaster scenario where the task is to clear blockades and reach certain critical locations in the environment. A similar setting was also investigated using a team of real robots. The results show that our approach outperforms ad-hoc extensions of state-of-the-art cost-based coordination methods and that the approach is able to efficiently coordinate teams of heterogeneous robots and to consider symbolic actions.  相似文献   

15.
In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as the brain shifting during surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique.  相似文献   

16.
17.
Understanding how an animal can deform and articulate is essential for a realistic modification of its 3D model. In this paper, we show that such information can be learned from user‐clicked 2D images and a template 3D model of the target animal. We present a volumetric deformation framework that produces a set of new 3D models by deforming a template 3D model according to a set of user‐clicked images. Our framework is based on a novel locally‐bounded deformation energy, where every local region has its own stiffness value that bounds how much distortion is allowed at that location. We jointly learn the local stiffness bounds as we deform the template 3D mesh to match each user‐clicked image. We show that this seemingly complex task can be solved as a sequence of convex optimization problems. We demonstrate the effectiveness of our approach on cats and horses, which are highly deformable and articulated animals. Our framework produces new 3D models of animals that are significantly more plausible than methods without learned stiffness.  相似文献   

18.
19.
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.  相似文献   

20.
In this paper, we present a novel approach for reconstructing an object surface from its silhouettes. The proposed approach directly estimates the differential structure of the surface, and results in a higher accuracy than existing volumetric approaches for object reconstruction. Compared with other existing differential approaches, our approach produces relatively complete 3D models similar to volumetric approaches, with the topology conforming to what is observed from the silhouettes. In addition, the method neither assumes nor depends on the spatial order of viewpoints. Experimental results on both synthetic and real world data are presented, and comparison is made with other existing approaches to demonstrate the superiority of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号