首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 359 毫秒
1.
基于三维荧光光谱结合小波压缩与交替惩罚三线性分解(APTLD)对水中多环芳烃(PAHs)进行定性和定量分析,实验以萘(NAP)、芴(FLU)、苊(ANA)为测量样品。首先用FS920荧光光谱仪测量获得样品的三维荧光光谱数据,对数据进行激发和发射校正且去散射,得到真实光谱。为了解决三维荧光光谱数据的冗余信息,通过小波变换对实验光谱数据进行压缩,其压缩分数和数据恢复分数分别大于92%和95%。用APTLD对压缩后的光谱数据进行分析,体现了二阶优势,实验结果表明,在PAHs的荧光光谱严重重叠和有干扰物共存下,该方法仍能准确地测定,其回收率为94%~98%、预测均方根误差小于0.29 μg·L-1。  相似文献   

2.
多环芳烃(PAHs)作为一种芳香族化合物,普遍存在于人们的生产生活中,它具有强烈的致癌性,威胁着人们的生命和健康。所以,对多环芳烃实施简洁、高效、精确的检测方法很有必要。根据常见的多环芳烃类型,选取多环芳烃萘(NAP)、芴(FLU)、苊(ANA)的固体粉末状物质作为实验样本。取NAP, FLU和ANA粉末各1 g溶于少量的甲醇(光谱级)溶液,然后转移到100 mL的去离子水溶液中,配置PAHs标准溶液。采用FS920荧光光谱仪,实验中为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长10 nm。以标准溶液为基准,获取ANA, NAP和FLU单质的水溶液的荧光光谱图。在标准溶液的基础上,配置0.1 mg·mL~(-1)的单质水溶液,然后将ANA与NAP, FLU分别取不同的体积相互混合形成两种混合溶液,各自形成16种不同浓度比例的混合溶液,再取不同体积的三种溶液相互混合,摇匀震荡,最后一共形成48种不同体积比例的混合溶液。最后将实验数据输入Matlab中得到苊萘、苊芴、苊芴萘混合溶液的荧光光谱,发现混合溶液的激发波长在260~320 nm、发射波长300~380 nm波长范围内,最佳发射波长的位置相似,荧光峰对应的激发波长有大部分重叠。针对荧光光谱不能直接辨别混合物的种类的不足,将基于遗传算法(GA)优化的支持向量机(SVM)应用于多环芳烃混合物种类的检测中,将数据随机打乱,并且将遗传算法的终止进化代数设为200、训练数据和预测数据分别为36个和12个,得到训练结果的准确率为95.42%。将实验结果对比分析普通支持向量机和BP神经网络,结果表明,基于遗传算法优化的支持向量机分类误差较小,能比较准确的分辨混合物的种类。  相似文献   

3.
为了实现对掺伪芝麻油的快速鉴别,应用FS920荧光光谱仪测定样品的三维荧光光谱数据。将三维荧光光谱图视为灰度图,在没有任何预处理的前提下,直接应用Zernike图像矩提取三维光谱灰度图的特征信息,然后采用类平均法对特征信息进行聚类分析,从定性角度实现掺伪芝麻油的鉴别,并解析其组成成分。最后应用广义回归神经网络(GRNN)对掺伪样本的成分进行定量分析。聚类分析能够以很高的辨识率来识别掺伪芝麻油,并能够正确解析其组成成分。定量模型预测了2组掺伪样本中各成分的相对体积,其平均相对误差分别为2.23%,8.00%,9.70%和9.70%。分析结果表明,Zernike矩能够有效提取光谱的特征信息,光谱数据的Zernike矩特征结合聚类分析以及GRNN模型能够获得良好的定性和定量分析结果,为掺伪芝麻油的鉴别提供了一种新的方法。  相似文献   

4.
多环芳烃(PAHs)是煤,石油,木材,烟草等燃料和有机高分子化合物等有机物不完全燃烧时产生的一种持久性有机污染物。迄今已发现有200多种PAHs,其中有多种PAHs具有致癌性。PAHs广泛分布于我们生活的环境中,水中的PAHs主要来源于生活污水,工业排水和大气沉降。使用三维荧光光谱法,结合BP神经网络与交替三线性分解(ATLD)算法对水中的PAHs进行定性和定量分析。以苊(ANA)和芴(FLU)2种PAHs为目标分析物,用甲醇(光谱级)制备样本。使用FS920稳态荧光光谱仪对样本进行检测,设置激发波长为200~370 nm,间隔10 nm记录一个数据;发射波长为240~390 nm,间隔2 nm记录一个数据。设置初始发射波长总是滞后激发波长40 nm,以消除一级瑞利散射的干扰。随后使用BP神经网络法对待测样本数据进行预处理。利用BP神经网络基于误差反向传播算法(error back propagation training,BP)原理,对测得的三维荧光数据进行数据压缩处理,该方法具有柔性的网络结构与很强的非线性映射能力,网络的输入层、隐含层和输出层的神经元个数可根据实际情况设定,并且网络的结构不同时,性能也有所差异。随后,用ATLD算法分解预处理后的三维荧光光谱数据。采用核一致诊断法确定待测样本的组分数为2。结果表明,ATLD算法分解得到两种PAHs(ANA和FLU)的激发、发射光谱图与目标光谱非常相似,能实现光谱重叠严重的PAHs(ANA和FLU)的快速定性和定量分析,实现了以“数学分离”代替“化学分离”。将预测样本导入训练好的BP神经网络中,得到处理后待测样本数据的网络均方差(MSE)均小于0.003,网络的峰值信噪比(PSNR)均大于120dB(数据压缩中典型的峰值信噪比值在30~40 dB之间,越高越好),可见BP神经网络对样本数据的压缩效果较好。BP神经网络训练后,得到输出值与目标值之间的拟合度高,拟合系数达0.998,具有较好的数据压缩效果。使用ATLD算法对待测样本进行分解后得到平均回收率为97.1%和98.9%,预测均方根误差为0.081 8和0.098 5 μg·L-1。三维荧光光谱结合BP神经网络和ATLD能够实现痕量PAHs的快速检测。  相似文献   

5.
基于荧光检测机理,将平行因子与支持向量机(SVM)算法相结合,对多环芳烃中的苊、芴和萘进行检测。将荧光光谱数据预处理后作为训练集,输入到粒子群优化的SVM算法中建立分类模型;利用核一致性分析、残差平方和分析以及迭代次数分析方法确定成分数;采用得到的最佳成分数进行平行因子分解,将得到的发射载荷矩阵作为测试集输入到SVM的分类模型中,分类正确率为100%,最终得到苊、芴和萘的回收率分别为100.45%±6.25%、100.10%±6.39%和95.07%±7.46%。所用算法避免了人为操作增加的时间复杂性及主观因素造成的误差,为多环芳烃的荧光检测提供了一种新方法。  相似文献   

6.
三维荧光光谱法在研究多环芳烃(PAHs)类物质的荧光信息时起到了重要作用。多环芳烃类物质具有致癌性,难降解性,多由尾气排放,垃圾焚烧产生,危害着人类健康及环境,因此人们不断探索对多环芳烃检测的方法。实验选取多环芳烃中的苊和萘作为检测物质,利用FLS920荧光光谱仪,为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长40 nm,设置扫描的激发波长(λex)范围为:200~370 nm,发射波长(λem)范围为:240~390 nm,对多环芳烃进行荧光扫描获取荧光数据,采用三维荧光光谱技术结合平行因子算法对混合溶液中的苊和萘进行定性定量分析。实验选用的苊和萘均购于阿拉丁试剂官网,配制浓度为10 mg·L-1的一级储备液,再将一级储备液稀释,得到苊和萘浓度为0.5,1,1.5,2,2.5,3,3.5,4和4.5 mg·L-1的二级储备液,并将苊和萘进行混合。在进行光谱分析前需要对苊和萘的光谱进行预处理,采用空白扣除法扣除拉曼散射的影响,并采用集合经验模态分解(EEMD)消除干扰噪声。实验测得苊存在两个波峰,位于λex=298 nm,λem=324/338 nm处,萘存在一个波峰,位于λex=280 nm,λem=322 nm处。选用的PARAFAC算法对组分数的的选择很敏感,因此采用核一致诊断法预估组分数,估计值2和3的核一致值都在60%以上,分别对混合样品进行了2因子和3因子的PARAFAC分解,将分解后得到的激发发射光谱数据和各组分浓度数据进行归一化处理,并绘制光谱图,与归一化处理后的真实的激发发射光谱图和各组分浓度图进行对比。同时将PARAFAC得到的混合样本的预测浓度,通过计算回收率(R)和均方根误差(RMSEP)来判定定量分析的准确度。选择2因子时,各混合样品中苊和萘拟合度为95.7%和96.7%,平均回收率分别为101.8%和98.9%,均方根误差分别为0.0187和0.0316;选择3因子时,各混合样品中苊和萘拟合度为95.3%和95.8%,平均回收率分别为97%和102.5%,均方根误差分别为0.033和0.116,由三项指标可得选用2因子进行定性定量分析的效果明显好于选用3因子。分析实验结果表明,基于三维荧光光谱法和PARAFAC算法对混合样品进行定性定量分析,能够有效的判定混合样品的类别,同时能够成功的预测出混合样品的浓度。  相似文献   

7.
基于三维荧光光谱结合交替惩罚四线性分解(APQLD)对痕量多环芳烃(PAHs)进行检测,实验以苊(ANA)和萘(NAP)为研究对象。首先利用小波变换对得到的三维荧光光谱数据进行压缩,以消除数据的冗余信息。分别在乙醇溶剂、甲醇溶剂以及超纯水条件下测定不同浓度的PAHs的激发-发射荧光光谱,并将其组合构建四维数据,利用APQLD对构建的四维光谱数据进行分析,并对比了PAHs在三种溶剂条件下各自的回收率。实验结果表明,用不同溶剂构建的四维数据能更准确地测定PAHs的浓度,其回收率更高;对比二阶校正以及其他四维校正算法,APQLD更能体现四维算法所具有的优越性;当因子数N=3时,ANA的回收率为96.5%~103.3%,预测均方根误差为0.04 μg·L-1;NAP的回收率为93.3%~110.0%,预测均方根误差为0.08 μg·L-1。  相似文献   

8.
多环芳烃(PAHs)具有强致癌性,威胁人类身体健康。在复杂水质检测环境中,利用荧光光谱检测PAHs浓度时,由于测量光谱中存在瑞利散射影响,使得PAHs光谱信号包含明显的非平稳噪声,常用的多次采样求均值法容易使PAHs光谱存在明显的测量误差,导致PAHs检测精度下降。为此,提出了一种基于3D荧光光谱分析和多维偏最小二乘(N-PLS)的PAHs浓度优化检测方法,首先分析了菲、芴、苊与荧蒽4种PAHs溶液的光谱特性,通过拟合散射带数据点值消除光谱中的瑞利散射噪声,同时尽可能地保留原光谱信息。提取4种PAHs光谱的均值、方差和一维边际分布等特征参数,利用聚类分析方法对其光谱数据做样本分类,将相似光谱数据样本进行合并;然后根据校正集的光谱信号与不同PAHs浓度之间的关系,建立N-PLS模型,对各类PAHs的浓度进行预测分析,并且验证PAHs浓度与光谱数据荧光强度的关系;最后利用双线性分解对浓度残差进行修正,对含有各类PAHs的水溶液与实际水样进行浓度残差验证,分析了不同参数下PAHs的预测误差。实验结果表明,溶剂菲有2个明显的荧光峰值,激发与发射波长分别为285/245和315/345 nm;芴与荧蒽均存在6个明显的荧光特征峰值,分别为265/255,325/345,335/325,365/355,385/395和405/415 nm,且与其他PAHs的荧光峰值相距较远; 溶液苊在发射波长300~485 nm的范围内存在连续波峰,且对应激发波长在255~360 nm范围内;N-PLS方法对不同水质环境下的PAHs预测误差较小,其中菲与芴均方根误差均小于0.4 μg·L-1,相对误差小于6%,苊与荧蒽均方根误差均小于1.0 μg·L-1,相对误差均小于9%。对4种不同的PAHs在河流中的扩散趋势进行了仿真分析,确定出了其扩散程度,其中芴与菲扩散速率约为51 mg·L-1,苊与荧蒽扩散速率为21 mg·L-1,且扩散速率在一定范围内呈线性增长趋势,PAHs与其浓度之间符合朗伯比尔定律的线性关系; 通过不同迭代次数下N-PLS方法的均方根误差分析,得到了均方根误差精度最高时的迭代次数;对比了不同主因子数时N-PLS方法对PAHs预测的适应度与相关系数,结果表明当主因子数为3时,适应度可达96.5%,此时N-PLS预测模型效果最佳。相比其他检测方法,本文方法检测精度较高,回收率较好,具有较强的鲁棒性。  相似文献   

9.
利用时间分辨荧光光谱技术,研究了菲、荧蒽、芴、蒽、芘等五种多环芳烃的荧光时间分辨发射光谱特性。以289 nm受激拉曼光作为激发光源,研究了289 nm激发光作用下五种多环芳烃的延时特性和门宽特性。并以多环芳烃随延时时间的荧光峰强度衰减关系曲线,得到菲、荧蒽、芴、芘的荧光寿命分别为37.0, 32.7, 10.9, 147.0 ns。不同荧光物质具有特定的荧光光谱特性,多环芳烃时间分辨荧光光谱特性的研究可以为复杂水体中不同种类多环芳烃的诊断提供依据。  相似文献   

10.
多环芳烃(polycyclic aromatic hydrocarbon,PAHs)具有强致癌性,极大威胁着人类身体健康。因此,寻找一种高效、精确的多环芳烃浓度检测方法十分必要。采用FS920荧光光谱仪分析了苯并(k)荧蒽(BkF)、苯并(b)荧蒽(BbF)、苯并(a)芘(BaP)混合溶液的荧光光谱特性。发现在激发波长260~400 nm、发射波长300~500 nm范围内,混合溶液的荧光光谱重叠严重。当混合物浓度配比不同时,荧光特性也存在很大差异。针对光谱图不能直接反映混合物各组分浓度的特点,将人工蜂群(ABC)算法优化的径向基函数(RBF)神经网络应用于浓度检测中,对比分析普通RBF和ABC-RBF神经网络模型。结果表明,ABC-RBF神经网络模型预测误差相对较小,训练到95次时,均方差精度达到10~(-3)。BkF、BbF和BaP的回收率平均值分别为99.20%、99.12%和99.23%,证明此网络适用于检测多环芳烃溶液,为检测多环芳烃浓度提供了一种快速、有效的新方法。  相似文献   

11.
海上溢油已成为全球环境污染的重要问题之一,溢油严重破坏了海洋生态的平衡,并导致人类健康受到危害。因此,研究高效的溢油检测方法对保护海洋生态环境具有重要意义。三维荧光光谱技术因能获得溢油的“指纹”图谱而成为溢油鉴别领域的有效分析手段,其与平行因子分析算法相结合获得了良好的溢油鉴别效果。但平行因子算法在使用过程中需要确定不同石油产品本身所适用的浓度范围,且其对预估计组分数敏感,组分数选择是否准确直接影响最终定性定量结果,这些问题都会对油类检测造成使用上的限制。油类组分极为复杂,其中各组分间不存在统一的线性浓度范围,其相互之间还受到荧光猝灭效应的影响。直接对未经稀释的油类样本进行光谱数据采集,所获得的三维荧光光谱会因样本中组分的种类及其含量不同而存在较大差异,导致对三维荧光光谱数据进行解析的平行因子分析算法不再适用。但组分的种类及含量相近的油样其光谱特征相似度较高,并且随着特定组分及其含量的改变,其光谱形状的变化规律也较为明显。基于此,将三维荧光光谱和数字图像识别相结合,提出一种针对混合油类样本的辨识方法。首先,利用五种矿物油(汽油、柴油、航空煤油、机油和润滑油)配制三类混合油样本,其中每类混合油是用其中两种不同矿物油以不同体积比直接混合配制而成;然后利用FS920荧光光谱仪获取样本的三维荧光光谱数据,并对该数据进行求导及灰度化预处理,进而得到三维荧光导数光谱灰度图;其次提取样本三维荧光导数光谱灰度图的颜色、纹理和形状等数字图像特征;最后,通过Fisher判别分析建立样本的分类模型,采用逐步回归建立混合油样本各组分相对体积的定量模型。分类模型对三类混合油样本的分类及识别效果良好。所建立的定量模型的线性相关性R大于0.99,显著性检验p值小于0.05。研究结果表明,三维荧光光谱的数字图像特征可以被本文所述方法有效提取并用于对油类样本的定性定量分析。该研究为海面溢油检测提供了一种简单、可靠的识别方法。  相似文献   

12.
The interaction of acenaphthene, anthracene, and phenanthrene with cetylpyridinium bromide (CPB) was studied. The CPB acts as a quencher provoking inhibition of fluorescence intensity emitted by these hydrocarbons. The existing differences in the fluorescence inhibition for these PAHs allow us to develop a selective synchronous spectrofluorimetric method for the determination of acenaphthene in a CPB micellar medium, with a detection limit of 9.2 and 10.4 ng ml-1 for Δλ = 10 and 40 nm, respectively. The method was applied to the selective determination of acenaphthene in mixtures of typical three-ring hydrocarbons, including anthracene, phenanthrene, and fluorene.  相似文献   

13.
三维荧光光谱结合Tchebichef矩快速鉴别掺伪芝麻油   总被引:1,自引:1,他引:0       下载免费PDF全文
应用FS920荧光光谱仪测定样品的三维荧光光谱数据,直接利用Tchebichef矩提取三维光谱灰度图的特征信息,然后对其进行聚类分析,最后通过逐步回归建立样本中各成分的线性模型。聚类分析能够准确识别掺伪芝麻油,并正确解析其组成成分,得到的线性模型相关系数R>0.99。研究表明,Tchebichef矩能够有效提取光谱的特征信息,应用于掺伪芝麻油鉴别可获得良好的定性和定量分析结果。  相似文献   

14.
传统荧光光谱技术已被用于土壤中多环芳烃(PAHs)的检测,但由于土壤体系的复杂性、PAHs污染物的多样化和微量化,传统的荧光光谱技术无法有效提取土壤中PAHs的特征信息。为了解决上述问题,提出并建立一种基于二维相关荧光谱土壤中多环芳烃的检测方法。以土壤中典型的多环芳烃蒽和菲为研究对象,配置38个蒽菲混合标准土壤样品(蒽和菲的浓度范围均为0.000 5~0.01 g·g-1),在激发波长265~340 nm,发射波长350~500 nm范围内采集了所有样品的三维荧光谱。以激发波长为外扰,对外扰变化的动态一维荧光谱进行相关计算,得到每一样品的同步二维相关荧光谱。研究了浓度均为0.005 g·g-1蒽菲混合土壤样品的三维荧光谱和同步二维相关荧光谱特性,在同步谱主对角线398,419,444和484 nm处存在自相关峰,其中,398和484 nm荧光峰来自土壤中的菲,419和444 nm荧光峰来自土壤中的蒽;在主对角线外侧,蒽和菲两组荧光峰之间存在负的交叉峰,进一步验证了其来源不同;同时,在(408,434) nm和(434,467) nm处出现交叉峰,其中408和434 nm荧光峰来自土壤中的菲,467 nm荧光峰来自土壤中的蒽。指出与三维荧光谱表征的信息相比,二维相关荧光谱不仅能提取更多的特征信息(408和467 nm的特征峰在三维荧光谱中未被表征),而且还能提供荧光峰之间的相互关系,对其来源进行有效解析。在上述研究二维相关荧光谱特性的基础上,基于同步相关谱矩阵(38×151×151)建立了定量分析土壤中蒽和菲污染物浓度的多维偏最小二乘(N-PLS)模型,对蒽的校正和预测相关系数分别为0.986和0.985,校正均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为4.33×10-4和5.55×10-4 g·g-1;对菲的校正和预测相关系数分别为0.981和0.984,RMSEC和RMSEP分别为5.20×10-4和4.80×10-4 g·g-1。为了比较,基于三维荧光光谱矩阵(38×16×151)建立了定量了分析土壤中蒽和菲的N-PLS模型,对蒽的校正和预测相关系数分别为0.981和0.972,RMSEC和RMSEP分别为5.09×10-4和6.74×10-4 g·g-1;对菲的校正和预测相关系数分别为0.957和0.956,RMSEC和RMSEP分别为7.36×10-4和7.77×10-4 g·g-1。指出,对于土壤中的蒽和菲检测,基于二维相关荧光谱的N-PLS模型的相关系数r,RMSEC和RMSEP都要优于基于三维荧光谱的N-PLS模型。研究结果表明:所提出和建立的方法-二维相关荧光谱直接检测土壤中PAHs污染物不仅可行,而且能提供更好的分析结果。该研究为激光诱导荧光结合相关谱技术现场直接检测土壤中多环芳烃污染物提供了理论和实验基础,具有较好的应用前景。  相似文献   

15.
Zhai HL  Shan ZJ  Li RN  Yu E 《Journal of fluorescence》2012,22(4):1013-1019
Digital image processing has been applied on various fields such as classification and qualitative analysis. In this work, a very simple quantitative approach was proposed for the first time. Based on the digital grayscale images of three-dimensional fluorescence spectra, several wavelet moment invariants were calculated, and used to establish the linear models for the quantitative analysis. This approach was applied to the quantitative analysis of Tryptophan, Tyrosine and Phenylalanine in mixture samples, and the correlation coefficients R(2) of the obtained linear models were more than 0.99, which were supported by the strict statistical parameters as well as leave-one-out and Jackknife cross-validations. Our study indicates that the selected wavelet moment invariants are immune from the noise and background signals, and the quantitative analysis can be performed accurately based on the overlapping peaks of compounds in mixture. This proposed approach provides a novel pathway for the analysis of three-dimensional spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号