首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the functional roles of Cys residues in the subunitof tryptophan synthase from Escherichia coli, single mutantsof the subunit, in which each of the three Cys residues wassubstituted with Ser, Gly, Ala or Val, were constructed by site-directedmutagenesis. The effects of the substitutions on the functionof tryptophan synthase were investigated by activity measurements,calorimetric measurements of association with the ßsubunit and steadystate kinetic analysis of catalysis. Althoughthe three Cys residues are located away from the apparentlyimportant parts for enzymatic activity, substitutions at position81 by Ser, Ala or Val caused decreases in the intrinsic activityof the subunit. Furthermore, Cys81Ser and Cys81Val reducedstimulation activities in the and ß reactions dueto formation of a complex with the ß subunit. Thelower stimulation activities of the mutant proteins were notcorrelated with their abilities to associate with the ßsubunit but were correlated with decreases in kcat. The presentresults suggest that position 81 plays an indirectly importantrole in the activity of the subunit itself and the mutual activationmechanism of the complex.  相似文献   

2.
The DNA sequence of bovine microsomal cytochrome b5 has beenamplified from a liver cDNA library using a polymerase chainreaction. The amplified cDNA when cloned into plasmids thatsupport the high-level production of cytochrome bs in E.colileads to protein overexpression and results in cell coloniesbearing a strong red colouration. Using cassette mutagenesis,truncated versions of the cytochrome b5 cDNA have been madethat encode the first 90 amino acid residues (Ala1-Lys90), thefirst 104 amino acids (Ala1-Ser104) and the complete protein(Ala1-Asnl33). The location of the overexpressed cytochromebs within prokaryotic cells is dependent on the overall lengthof the protein. Expression of the Ala-Lys90 and Alal-SerlO4variants leads to a location in the cytoplasmic phase of thebacteria whereas the whole protein, Alal-Asnl33, is found withinthe bacterial membrane fraction. The last 30 residues of cytochromebs therefore contain all of the necessary information to insertthe protein into E.coli membranes. The solubility of the Alal-SerlO4variant permits the solution structure and stability of thisprotein to be measured using 1- and 2-D 1HNMR methods and electronicspectroscopy. 1-D NMR studies show that the chemical shiftsof the haem and haem ligand resonances of the Alal - Ser 104variant exhibit only very slight perturbations to their magneticmicroenvlronments when compared with the tryptic fragment offerricytochrome b5. These results indicate an arrangement ofresidues in the haem pocket that is very similar in both theAlal-Ser 104 variant and the tryptic fragment and by 2-D NMRit is shown that this similarity extends to the conformationsof the poly peptide backbone and side chains. Electronic spectroscopyof this variant shows absorbance maxima for the Soret peaksat 423 run (reduced) and 413 nm (oxidized). From absorbancespectra the relative thermal stabilities of the Alal-Ser 104variant and the tryptic fragment were measured. In the oxidizedstate the Ala1 - Ser104 variant denatures in a single cooperativetransition with a midpoint temperature (Tm of 73°C thatis significantly higher than that of ‘tryptic’ ferricytochromebs. The reduced form of the protein shows increased transitiontemperatures (Tm 78°C) reflected in the values of Hm, Smand (G) of 420 kj/mol, 1096 J/mol/K and 12.38 kj/mol respectively,estimated for this variant. The increased stability of the Alal-SerlO4variant and other recombinant forms of cytochrome bs is correlatedwith the presence of additional residues at the N- and C-termini.The subtle differences in reactivity, stability and targetingbetween variant forms of cytochrome bs and the tryptic fragmentare discussed in terms of the overall structure of the protein.  相似文献   

3.
An 8-fold {beta}{alpha} barrel protein with redundant folding possibilities   总被引:4,自引:0,他引:4  
Protein sequences containing redundant segments of secondarystructure at both termini have the choice a priori of foldinginto several possible circularly permuted variants of the wild-typetertiary structure. To test this hypothesis the gene of phosphoribosylanthranilate isomerase from yeast, which is a single-domain8-fold ß barrel protein, was modified to produce a10-fold ß homologue in Escherichia coli. It containeda duplicate of the two C-terminal ß units of supersecondarystructure fused to its N-terminus. Most of the protein was recoveredfrom the insoluble fraction of disrupted cells by dissolutionin guanidinium chloride solutions and refolding. Pristine proteinwas purified from the soluble fraction. The purified (ß)10proteins were enzymically almost fully active. Absorbance, fluorescenceand circular dichroism spectra as well as the reversible unfoldingbehaviour of both proteins were also very similar to the propertiesof the original (ß)8 protein. Digestion with endopeptidasesconverted both the pristine and the refolded (ß)10variant to the same large fragment that had the N-terminal sequenceand mol. wt of the wild-type ß)8 protein. The datasuggest that the folding of the (ß)10 variant is controlledthermodynamically both in vivo and in vitro.  相似文献   

4.
Within the BRIDGE T-project on lipases we investigate the structure-functionrelationships of the lipases from Bacillus subtilis and Pseudomonasaeruginosa. Construction of an overproducing Bacillus. strainallowed the purification of > 100 mg lipase from 30 l culturesupernatant. After testing a large variety of crystallizationconditions, the Bacillus lipase gave crystals of reasonablequality in PEG-4000 (38-45%), Na2SO4 and octyl-ß-glucosideat 22°C, pH 9.0. A 2.5 Å; dataset has been obtainedwhich is complete from 15 to 2.5 A resolution. P.aeruginosawild-type strain PAC1R was fermented using conditions of maximumlipase production. More than 90% of the lipase was cell boundand could be solubilized by treatment of the cells with TritonX-100. This permitted the purification of 50 mg lipase. So far,no crystals of sufficient quality were obtained. Comparisonof the model we built for the Pseudomonas lipase, on the basisof sequences and structures of various hydrolases which werefound to possess a common folding pattern (/ß hydrolasefold), with the X-ray structure of the P.glumae lipase revealedthat it is possible to correctly build the structure of thecore of a protein even in the absence of obvious sequence homologywith a protein of known 3-D structure.  相似文献   

5.
The main component of the amyloid senile plaques found in Alzheimer'sbrain is the amyloid-ß-peptide (Aß), a proteolyticproduct of a membrane precursor protein. Previous structuralstudies have found different conformations for the Aßpeptide depending on the solvent and pH used. In general, theyhave suggested an -helix conformation at the N-terminal domainand a ß-sheet conformation for the C-terminal domain.The structure of the complete Aß peptide (residues 1–40)solved by NMR has revealed that only helical structure is presentin Aß. However, this result cannot explain the large ß-sheetAß aggregates known to form amyloid under physiologicalconditions. Therefore, we investigated the structure of Aßby molecular modeling based on extensive homology using theSmith and Waterman algorithm implemented in the MPsrch program(Blitz server). The results showed a mean value of 23% identitywith selected sequences. Since these values do not allow a clearhomology to be established with a reference structure in orderto perform molecular modeling studies, we searched for detailedhomology. A 28% identity with an /ß segment of a triosephosphateisomerase (TIM) from Culex tarralis with an unsolved three-dimensionalstructure was obtained. Then, multiple sequence alignment wasperformed considering Aß, TIM from C.tarralis and anotherfive TIM sequences with known three-dimensional structures.We found a TIM segment with secondary structure elements inagreement with previous experimental data for Aß. Moreover,when a synthetic peptide from this TIM segment was studied invitro, it was able to aggregate and to form amyloid fibrils,as established by Congo red binding and electron microscopy.The Aß model obtained was optimized by molecular dynamicsconsidering ionizable side chains in order to simulate Aßin a neutral pH environment. We report here the structural implicationsof this study.  相似文献   

6.
Insertion sites for cysteines with optimal stereochemistry forthe formation of unstrained disulfide bridges were identifiedin recombinant human interferon- (rhu-IFN-) by computer modelling.We have engineered two different disulfide cross-linked mutants,containing a pair of symmetry-related disulfide bonds, whichstabilize the N-termini of both monomers of the homodimenc protein.Mutations E7C and S69C allow the formation of an intramonomerdisuffide bond between helices A and D. In contrast, the A17Cand H111C mutations lead to a covalent cross-link between bothmonomers. The AB-loop is linked to helix F. The fluorescenceproperties of native and disulfide cross-linked proteins werestudied as a function of guanidine hydrochloride concentration.Melting temperatures (Tm) were calculated from the decreasein CD ellipticity at 220 nm. The induction of the antiviraleffect was measured using A549 fibroblast cells infected withencephalomyocarditis virus. The ability to induce the expressionof the HLA-DR antigen in Colo 205 cells was determined by fluorescence-activatedcell scanning analysis. The stability of both mutants was stronglyenhanced against temperature- and cosolvent-induced unfolding.The Tm of mutant IFN- E7C/S69C was 15°C. All measured biologicalactivities of this mutant were equal to wild type. In the caseof the other mutant IFN- A17C/H111C, the Tm value was 25°C.This mutation abolishes nearly the entire biological activity(<1%) with no detectable changes of secondary structure inthe CD spectrum. Our results illustrate the importance of theN-terminal helix A and the AB-loop for the unfolding pathwayand thermodynamic stability of rhu-IFN-.  相似文献   

7.
Site-directed mutagenesis was performed at Asp-Gly (48–49,66–67, 101–102) and Asn-Gly (103–104) sequencesof hen egg-white lysozyme to protect the enzyme against irreversiblethermoinactivation. Because the lysozyme inactivation was causedby the accumulation of multiple chemical reactions, includingthe isomerization of the Asp-Gly sequence and the deamidationof Asn [Tomizawa et al.(1994) Biochemistry, 33, 13032–13037],the suppression of these reactions by the substitution of Glyto Ala, or the introduction of a sequence of human-type lysozyme,was attempted and the mutants (where each or all labile sequenceswere replaced) were prepared. The substitution resulted in thereversible destabilization from 1 to 2 kcal/mol per substitution.The destabilization was caused by the introduction of ß-carbonto the constrained position that had conformational angles withinthe allowed range for the Gly residue. Despite the decreasein the reversible conformational stability, the mutants hadmore resistance to irreversible inactivation at pH 4 and 100°C.In particular, the rate of irreversible inactivation of themutant, which was replaced at four chemically labile sequences,was the latest and corresponded to 18 kcal/mol of the reversibleconformational stability. Therefore, replacement of the chemicallylabile sequence was found to be more effective at protectingenzymes against irreversible thermoinactivation than at strengtheningreversible conformational stability.  相似文献   

8.
An analysis of the geometry and the orientation of metal ionsbound to histidine residues in proteins is presented. Cationsare found to lie in the imidazole plane along the lone pairon the nitrogen atom. Out of the two tautomeric forms of theimidazole ring, the NE2-protonated form is normally preferred.However, when bound to a metal ion the ND1-protonated form ispredominant and NE2 is the ligand atom. When the metal coordinationis through ND1, steric interactions shift the side chain torsionalangle, X2 from its preferred value of 90 or 270. The orientationof histidine residues is usually stabilized through hydrogenbonding; ND1-protonated form of a helical residue can form ahydrogen bond with the carbonyl oxygen atom in the precedingturn of the helix. A considerable number of ligands are foundin helices and ß-sheets. A helical residue hound toa heme group is usually found near the C-terminus of the helix.Two ligand groups four residues apart in a helix, or two residuesapart in a ß-strand are used in many proteins to bindmetal ions.  相似文献   

9.
A semisynthetic winter flounder antifreeze proprotein (proAFP)coding region was constructed and inserted into a lacZ expressionvector. ProAFP was produced from the vector in Escherichia colias a C-terminal fusion to the first 289 amino acids of ß-galactosidase(ß-gal). The proAFP and ß-gal domains ofthe ß-gal–proAFP fusion protein were separatedby the recognition signal for the blood coagulation protease,factor Xa. Upon induction with isopropylthio-ß-D-galactosidethe fusion protein accumulated to levels of 15% of the totalprotein. The ß-gal–proAFP fusion protein waspartially purified by differential centrifugation, but requiredsolubilization prior to factor Xa digestion. The solubilizedfusion protein was efficiently and correctly cleaved by factorXa, after which the proAFP was purified by gel permeation. BacterialproAFP was indistinguishable from natural proAFP by the criteriaof antifreeze activity, amino-terminal sequence (15 cycles),reverse-phase HPLC and SDS–polyacrylamide gel electrophoresis.Circular dichroism measurements showed that proAFP is a compositeof random coil and -helical secondary structure, with an -helicalcontent of 44% at 0°C. It seems probable that the C-terminalregion of proAFP, which corresponds to the mature AFP protein,is mainly -helical, and that the N-terminal pro-segment is randomcoiled.  相似文献   

10.
The X-ray structure of a variant of basic pancreatic trypsininhibitor (BPTI) has been analyzed to determine the structuralaccommodation resulting from removal of a disulfide crosslinkin a protein. The disulfide removed, Cys30–Cys51, hasbeen implicated in both the folding pathway of the protein andits overall thermal stability. In the variant studied, C30A/C51A,the disulfide cysteines were replaced by less bulky alanines.The atomic displacements observed for C30A/C51A indicate a setof concerted shifts of two segments of chain, which togethersignificantly diminish a packing defect at the site of the removedcysteine sulfur atoms. The observed structural changes are distributedasymmetrically around the sites of mutation, indicating thatthe adjacent ß-sheet is more resistant to the perturbationthan the -helix on the opposite side of the disulfide bond.The thermal parameters of groups involved in the structuralaccommodation are not significantly altered. A comparison ofthe X-ray structures reported for native BPTI determined inthree different crystal forms indicates that the magnitude ofits conformational variability exceeds that of the structuralchanges caused by the disulfide removal. This emphasizes thenecessity of using isomorphous crystal systems to determinethe relatively small effects due to mutation.  相似文献   

11.
Bovine ß-1, 4-galactosyltransferase (ß-1,4-GT; EC 2.4.1.90 [EC] ) belongs to the glycosyltransferase familyand as such shares a general topology: an N-terminal cytoplasmictail, a signal anchor followed by a stem region and a catalyticdomain at the C-tenninal end of the protein. cDNA constructsof the N-terminal deleted forms of ß-1, 4-GT wereprepared in pGEX-2T vector and expressed in E.coli as glutathione-S-transferase(GST) fusion proteins. Recombinant proteins accumulated withininclusion bodies as insoluble aggregates that were solubilizedin 5 M guanidine HCl and required an ‘oxido-shuffling’reagent for regeneration of the enzyme activity. The recombinant(ß-1, 4-GT, devoid of the GST domain, has 30–85%of the sp. act. of bovine milk ß-1, 4-GT with apparentKms for N-acetylglucosamine and UDP-galactose similar to thoseof milk enzyme. Deletion analysesshow that both (ß-1,4-GT and lactose synthetase activities remain intact even inthe absence of the first 129 residues (pGT-dl29). The activitiesare lost when either deletions extend up to residue 142 (pGT-dl42)or Cysl34 is mutatedto Ser (pGT-dl29C134S). These results suggestthat the formation of a disulfide bond involving Cysl34 holdsthe protein in a conformation that is required for enzymaticactivity.  相似文献   

12.
The parallel ß-barrel is a recurrent structural motiffound in a large variety of different enzymes belonging to thefamily of /ß-proteins. It has been shown previouslythat the hyperboloid can be considered as a scaffold describingthe parallel ß-barrel structure. To assess restraintson ß-strand twist imposed by a given scaffold geometry,the notion of scaffold twist, Ts, is introduced. From Ts, theß-strand twist (Twß) expected for a givenscaffold geometry can be derived and it is verified that thiscomputed twist can be used to identify ß-barrels characterizedby good hydrogen bonding. It is noted that Twß isonly slightly affected for ß-barrels differing inthe number (N) of ß-strands, suggesting that restraintson main-chain conformation of ß-strands are not likelyto account for the N = 8 invariability observed in natural parallelß-barrels thereby strengthening previous work rationalizingthis constancy.  相似文献   

13.
The crystal structure of xylose isomerase [E.C. 5.3.1.5 [EC] ] fromStreptomyces olivochromogenes has been determined to 3.0 Åresolution. The crystals belong to space group P22121 with unitcell parameters a = 98.7, b = 93.9, c = 87.7. The asymmetricunit contains half of a tetrameric molecule of 222 symmetry.The two-fold axis relating the two molecules in the asymmetricunit is close to where a crystallographic two-fold would beif the space group were 1222. This causes the diffraction patternto have strong 1222 pseudo-symmetry, so all data were collectedin this pseudo-space group. Since the sequence of this enzymehas not been reported, a polyalanine backbone has been fittedto the electron density. Xylose isomerase has two domains: theN-terminal domain is an eight-stranded /ß barrel of299 residues. The C-terminal domain is a large loop of 50 residueswhich is involved in inter-molecular contacts. Comparison ofxylose isomerase with the archetypical /ß barrel protein,triose phosphate isomerase, reveals that the proteins overlapbest when the third (ß) strand of xylose isomeraseis superimposed on the first (ß) strand of triosephosphate isomerase. This same overlap has also been found betweenthe muconate lactonising enzyme and triose phosphate isomerase[Goldman et al. (1987) J. Mol. Biol., in press].  相似文献   

14.
Protein farnesyltransferase (FPT) is a 97 000 Da heterodimericenzyme that catalyzes post-translational farnesylation of manycellular regulatory proteins including p21 Ras. To facilitatethe construction of site-directed mutants, a novel translationallycoupled, two-cistron Escherichia coli expression system forrat FPT has been developed. This expression system enabled yieldsof >5 mg of purified protein per liter of E.coli cultureto be obtained. The E.coli-derived FPT demonstrated an activitycomparable to that of protein isolated from other sources. Thereported expression system was used to construct three ß-subunitC-terminal truncation mutants, 5, 10 and 14, which were designedto eliminate a lattice interaction between the ß-subunitC-terminus of one molecule and the active site of a symmetry-relatedmolecule. Steady-state kinetic analyses of these mutants showedthat deletion up to 14 residues at the C-terminus did not reducethe value of kcat; however, Km values for both peptide and FPPincreased 2–3-fold. A new crystalline form of FPT was obtainedfor the 10 C-terminal mutant grown in the presence of the substrateanalogs acetyl-Cys-Val-Ile-Met-COOH peptide and -hydroxyfarnesylphosphonicacid. The crystals diffract to beyond 2.0 Å resolution.The refined structure clearly shows that both substrate analogsadopt extended conformations within the FPT active site cavity.  相似文献   

15.
Fungal glucoamylases contain four conserved regions. One regionfrom the Aspergillus niger enzyme contains three key carboxylicacid residues, the general acid catalytic group, Glu179, alongwith Asp176 and Glu180. Three site-directed mutations, Leu177– His, Trp178 – Arg and Asn182 – Ala, wereconstructed near these acidic groups to reveal the functionof other conserved residues in this region. Leu177 and Trp178are strictly conserved among fungal glucoamylases, while anamide, predominantly Asn, always occurs at position 182. Substitutionsof Leu177 or Trp178 cause significant decreases in kcat withthe substrates tested. Similar increases in activation energiesobtained with Leu177 – His with both -(1,4)- and -(1,6)-linkedsubstrates indicate Leu177 is located in subsite 1. KM valuesobtained with the Trp178 – Arg mutation increase for an-(1,6)-linked substrate, but not for -(1,4)-linked substrates.Calculated differences in activation energy between substratesindicate Trp178 interacts specifically with subsite 2. The Asn182 Ala mutation did not change kcat or KM values, indicating thatAsn182 is not crucial for activity. These results support amechanism for glucoamylase catalytic activity consisting ofa fast substrate binding step followed by a conformational changeat subsite 1 to stabilize the transition state complex.  相似文献   

16.
The Sulfolobus solfataricus, strain MT4, ß-glycosidase(Ssßgly) is a thermophilic member of glycohydrolasefamily 1. To identify active-site residues, glutamic acids 206and 387 have been changed to isosteric glutamine by site-directedmutagenesis. Mutant proteins have been purified to homogeneityusing the Schistosoma japonicum glutathione S-transferase (GST)fusion system. The proteolytic cleavage of the chimeric proteinwith thrombin was only obtainable after the introduction ofa molecular spacer between the GST and the Ssß-glydomains. The Glu387 Gin mutant showed no detectable activity,as expected for the residue acting as the nucleophile of thereaction. The Glu206 Gin mutant showed 10- and 60-fold reducedactivities on aryl-galacto and aryl-glucosides, respectively,when compared with the wild type. Moreover, a significant Kmdecrease with plo-nitrophenyl-ß-D-glucoside was observed.The residual activity of the Glu206 Gln mutant lost the typicalpH dependence shown by the wild type. These data suggest thatGlu206 acts as the general acid/base catalyst in the hydrolysisreaction.  相似文献   

17.
In the cross-linking reaction of lysozyme between Leu129 (-COO)and Lys13 (-NH3+ using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimidehydrochloride (EDC), a side reaction of the peptide bond inversionfrom to ß between A and Gly102 was greatly reducedby addition of ß-(1,4)-linked trimer of N-acetyl-D-glucosamine[(NAG)3] When methylamine or 2-hydroxyethylamine was furtheradded, the extent of the cross-link formation was decreasedand the derivative where the -carboxyl group of Leu129 was modifiedwith the amine was newly obtained. On the other hand, when ammoniawas added, the ß-carboxyl group of Asp119 insteadof the -carboxyl group was mainly amidated. From these results,the presence of a salt bridge between Asp119 and Arg125 besidesthat between Lys13 and Leu129 is proposed. Enzymatic activitiesof the derivatives prepared here indicated that the modificationof the -carboxyl group reduced the activity to {small tilde}90% of that of native lysozyme. Des-Leu129 lysozyme, which lacksLeu129 also showed {small tilde} 90% of the activity of nativelysozyme. Therefore, the salt bridge between Lys13 and Leu129may play some role in maintaining the active conformation oflysozyine.  相似文献   

18.
In order to probe the structural constraints on binding of RGDsequences to the platelet receptor IIbß3 we have usedrecombinant DNA techniques to install the RGD sequence into‘presentation scaffolds’, small proteins of known3-D structure chosen to present guest sequences in constrainedorientations. Using Escherichia coli expression systems we madesequence variants in which loop residues of the immunoglobulinVL domain REI and of human interleukin-1ß were replaced(without changing polypeptide length) by the RGD sequence atpositions predicted, based on small molecule studies, to orientthe RGD moiety into an active conformation. These variants donot compete for fibrinogen binding to IIbß3 up toalmost 1 mM concentration. Unfolded or proteolytically fragmentedforms of these same proteins do compete, however, showing thatthe RGD sequences in the mutants must be prohibited from bindingby constraints imposed by scaffold structure. To suppress theeffects of such structural constraints we constructed two sequencevariants in which RGD-containing sequences 42–57 or 44–55from the snake venom platelet antagonist kistrin were inserted(this increasing the length of the loop) into the third complementaritydetermining loop of REI. Both of these variants compete stronglyfor fibrinogen binding with IC50s in the nM range. These results,plus data on kistrin-related peptides also presented here, suggestthat the molecular scaffold REI is capable of providing to aninstalled sequence a structural context and conformation beneficialto binding. The results also suggest that in order to bind wellto IIbß3, RGD sequences in protein ligands must eitherproject significantly from the surface of the scaffold and/orretain a degree of conformational flexibility within the scaffold.Molecular scaffolds like REI should prove useful in the elucidationof structure-function relationships and the discovery of newactive sequences, and may also serve as the basis for noveltherapeutic agents.  相似文献   

19.
A mutational study was performed on the corepressor (Ltryptophan)binding site of the trp repressor of Escherichia coli. Threonine81, one of the residues forming the hydrophobic pocket of thebinding site, was replaced with Ser, Cys and Met by cassettemutagenesis. Biochemical characterization showed that all thesemutations caused a moderate decrease in tryptophan binding activity(free energy change 1 kcal/mol). The results suggested thatthe binding pocket is rather flexible in the vicinity of Thr81.On the other hand, the mutations produced a discernible decreasein the repressor activity in vivo, apparently by weakening oreliminating the hydrogen bond between Thr81 and the operatorDNA, as well as by introducing possible side-chain rearrangement.  相似文献   

20.
A composite plot for depicting in two dimensions the conformationand the secondary structural features of protein residues hasbeen developed. Instead of presenting the exact values of themain- and side-chain torsion angles (, and 1), it indicatesthe region in the three-dimensional conformational space towhich a residue belongs. Other structural aspects, like thepresence of a cis peptide bond and disulfide linkages, are alsodisplayed. The plot may be used to recognize patterns in thebackbone and side-chain conformation along a polypeptide chainand to compare protein structures derived from X-ray crystallography,NMR spectroscopy or molecular modelling studies and also tohighlight the effect of mutation on structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号