首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of Al2O3 and Y2O3 partially-stabilized ZrO2 were isostatically hot-pressed using submicrometer powders as the starting material. The addition of Al2O3 resulted in a large increase in bending strength. The average bending strength for a composite containing 20 wt% Al2O3 was 2400 MPa, and its fracture toughness was 17 MN·w−3/2  相似文献   

2.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

3.
The conditions necessary for synthesizing Al4SiC4 from mixtures of aluminum, silicon, and carbon and kaolin, aluminum, and carbon, as starting materials, were examined in the present study. The standard Gibbs energy of formation for the thermodynamic reaction SiC( s ) + Al4C3( s ) = Al4SiC4( s ) changed from positive to negative at 1106°C. SiC and Al4C3 formed as intermediate products when the mixture of aluminum, silicon, and carbon was heated in argon gas, and Al4SiC4 then formed by reaction of the SiC and Al4C3 at >1200°C. Al4C3, SiO2, Al2O3, SiC, and Al4O4C formed as intermediate products when the mixture of kaolin, aluminum, and carbon was heated under vacuum, and Al4SiC4 formed from a reaction of those intermediate products at >1600°C.  相似文献   

4.
Stable Al2O3–SiC–YAG hybrid composites were successfully fabricated by reaction of Al2O3 and Y2O3 and incorporation of SiC. The hot-pressed bodies consisted of uniformly dispersed grains of microsized YAG particulates and nanosized SiC particulates in an Al2O3 matrix. Although the grain size of monolithic A12O3 increases markedly with increased temperature, the grain size of the Al2O3–SiC–YAG hybrid composites was effectively restrained due to grain-boundary pinning by the particulates.  相似文献   

5.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

6.
Wet milling of Al2O3-aluminide alloy (3A) precursor powders in acetone has been investigated by milling Fe/Al/Al2O3 and Fe2O3/Al/Al2O3 powder mixtures. The influence of the milling process on the physical and chemical properties of the milled powders has been studied. Particle refinement and homogenization were found not to play a dominant role, whereas plastic deformation of the metal particles leads to the formation of dislocations and a highly disarranged polycrystalline structure. Although no chemical reactions among the powder components in Fe2O3/Al/Al2O3 powder mixtures were observed, the formation of a nanocrystalline, ordered intermetallic FeAl phase in Fe/Al/Al2O3 powder mixtures caused by mechanical alloying was detected. Chemical reactions of Fe and Al particle surfaces with the atmosphere and the milling media lead to the formation of highly porous hydroxides on the particle surfaces. Hence the specific surface area of the powders increases, while the powder density decreases during milling. The fraction of Fe oxidized during milling was determined to be 0.13. The fraction of Al oxidized during milling strongly depends on the metal content of the powder mixture. It ranges between 0.4 and 0.8.  相似文献   

7.
The formation of nano-sized alumina–titanium carbide (Al2O3–TiC) composite powders from a carbon-coated titanium dioxide–aluminum (TiO2–Al) mixture was investigated. The carbon-coated TiO2–Al mixture altered the mechanism of the reaction, compared with standard mixtures, to produce high-quality nano-sized Al2O3–TiC powders. Data synthesized from intermediate temperatures indicate that these products form via Ti2O3 and Al3Ti. TEM images of the Al2O3–TiC powders showed fine size (50–100 nm), narrow size distribution, and lack of agglomeration. DSC data for the carbon-coated TiO2–Al mixture showed a single endothermic and four successive weak exothermic reactions as the carbon coating moderated the heat release during the reaction.  相似文献   

8.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

9.
Al2O3-WC-Co composites were fabricated by vacuum hot-pressing mixtures of Al2O3, WC, and cobalt powders. The phases formed with WC additions of up to 40 wt% were α-Al2O3, WC, Co3W3C, and small amounts of f-Co (face-centered cubic cobalt) and carbon (graphite); no cobalt or carbon phases formed at >40 wt% WC. A more-uniformly distributed and connected WC matrix formed as the WC content increased. The 10Al2O3-80WC-10Co (in wt%) composite exhibited high bending strength (1250 MPa), fracture toughness (9 MPam1/2), and hardness (20.6 ± 0.5 GPa) simultaneously. The high bending strength was mainly attributed to fewer fracture origins due to the uniformly distributed and connected WC matrix together with a lower porosity. Increased fracture toughness was caused mainly by crack deflection and crack bridging in a uniformly connected WC matrix. High hardness resulted from finer WC metallic compounds and Co3W3C precipitation in almost all ranges.  相似文献   

10.
Al2O3 reinforced by SiC whiskers (Al2O3/SiC-W) was hot-pressed to investigate the crack-healing behavior. Semielliptical surface cracks of 100 μm in surface length were introduced using a Vickers indenter. The specimens containing precracks were crack-healed at temperatures between 1000° and 1300°C for 1 h in air, and their strengths were measured by three-point bending tests at room temperature and elevated temperatures between 400° and 1300°C. The results show that Al2O3/SiC-W possesses considerable crack-healing ability. The surface cracks with length of 2 c = 100 μm could be healed by crack-healing at 1200° or 1300°C for 1 h in air. Fracture toughness of the material was also determined. As expected, the SiC whiskers made their Al2O3 tougher.  相似文献   

11.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

12.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

13.
Electroconductive Al2O3–NbN ceramic composites were prepared by hot pressing. Dense sintered bodies of ball-milled Al2O3–NbN composite powders were obtained at 1550°C and 30 MPa for 1 h under a nitrogen atmosphere. The bending strength and fracture toughness of the composites were enhanced by incorporating niobium nitride (NbN) particles into the Al2O3 matrix. The electrical resistivity of the composites decreased with increasing amount of NbN phase. For a 25 vol% NbN–Al2O3 composite, the values of bending strength, fracture toughness, Vickers hardness, and electrical resistivity were 444.2 MPa, 4.59 MPa·m1/2, 16.62 GPa, and 1.72 × 10−2Ω·cm, respectively, making the composite suitable for electrical discharge machining.  相似文献   

14.
Al2O3/SiC ceramic nanocomposites were fabricated from nanocrystalline Al2O3 (10 nm in diameter) and SiC (15 nm in diameter) powders, and a theoretical model of intragranular particle residual stress strengthening was investigated. The SiC nanoparticles in the Al2O3 grains create a normal compressive stress at the grain boundaries and a tangential tensile stress in the Al2O3 grains, resulting in the "strengthening" of the grain boundaries and "weakening" of the grains. The model gives a good explanation of the experimental results of the authors and others which are difficult to be explained by the existing strengthening models, i.e. the maximum strength is normally achieved at about 5 vol% of SiC particles in the Al2O3–SiC ceramic nanocomposites. According to the model, there exists an optimum amount of SiC for strengthening, below which the grain boundaries are not fully "strengthened" and the fracture is mainly intergranular, above which the grains are "weakened" too much and the fracture is mainly transgranular, and at which the fracture is a mixture of intergranular and transgranular.  相似文献   

15.
The fracture behavior of Al2O3/SiC nanocomposites has been studied as a function of the SiC volume fraction and compared to that of the pure Al2O3 matrix. A pronounced strengthening effect was only observed for materials with low SiC content (i.e., ≤10 vol%) although no evidence of concurrent toughening was found. Assessment of near-tip crack opening displacement (COD) could not experimentally substantiate significant occurrence of an elastic crack-bridging mechanism, in contrast with a recently proposed literature model. Quantitative fractography analysis indicated that transgranular crack propagation in Al2O3/SiC nanocomposites depends on the location of the SiC dispersoids within the matrix texture; the higher the fraction of transgranularly located dispersoids, the more transgranular the fracture mode. Experimental evidence of remarkably high residual stresses arising from thermal dilatation mismatch (upon cooling) between Al2O3 and SiC phases were obtained by fluorescence and Raman spectroscopy. A strengthening mechanism is invoked which merely arises from residual stress through strengthening of Al2O3 grain boundaries.  相似文献   

16.
The dynamic stress intensity factors, which were determined with newly developed bar impact facilities and a new data reduction procedure, for an Al2O3 ceramic and 29 vol% SiCw/Al2O3 composite were virtually identical, thus indicating that the short SiC whiskers were ineffective under dynamic fracture. SEM studies revealed five distinct fracture morphologies with increased percentage area of transgranular fracture in both materials with rapid crack propagation. Also, the high dynamic stress intensity factor caused multiple microscopic crack planes to form and then join as the crack advanced.  相似文献   

17.
Using a multipass extrusion process, continuous porous Al2O3 body (∼41% porosity) was produced and used as a substrate to fabricate continuous porous TiO2/Al2O3 composite membrane. The diameter of the continuous pores of the porous Al2O3 body was about 150 μm. The TiO2 nanopowders dip coated on the continuous pore-surface Al2O3 body existed as rutile and anatase phases after calcination at 520°C in air. However, after aging of the fabricated continuous porous TiO2/Al2O3 composite membrane in 20% NaOH at 60°C for 24 h, a large number of TiO2 fibers frequently observed on the pore surface. The diameter of the TiO2 fibers was about 150 nm having a high specific surface area. However, after 48-h aging period, the diameter of the TiO2 fibers increased, which was about 3 μm. Most of the TiO2 fibers had polycrystalline structure having nanosized rutile and anatase crystals of about 20 nm.  相似文献   

18.
Dense Sic ceramics were obtained by pressureless sintering of β-Sic and α-Sic powders as starting materials using Al2O3-Y2O3 additives. The resulting microstructure depended highly on the polytypes of the starting SiC powders. The microstructure of SiC obtained from α-SiC powder was composed of equiaxed grains, whereas SiC obtained from α-SiC powder was composed of a platelike grain structure resulting from the grain growth associated with the β→α phase transformation of SiC during sintering. The fracture toughness for the sintered SiC using α-SiC powder increased slightly from 4.4 to 5.7 MPa.m1/2 with holding time, that is, increased grain size. In the case of the sintered SiC using β-SiC powder, fracture toughness increased significantly from 4.5 to 8.3 MPa.m1/2 with holding time. This improved fracture toughness was attributed to crack bridging and crack deflection by the platelike grains.  相似文献   

19.
A method is proposed to prepare Al2O3-AlN-Ni composites. The composites are prepared by sintering Al2O3/NiAl powder mixtures at 1600°C in a mixture of nitrogen and carbon monoxide. The presence of NiAl particles raises the green density of Al2O3/NiAl powder compacts. During sintering, NiAl reacts with nitrogen to form AlN and Ni inclusions. A volume expansion accompanies the reaction. Because of the high green density and the reaction, the volume shrinkage of the Al2O3-AlN-Ni composite decreases with the increase of added NiAl content.  相似文献   

20.
The formation process of barium hexaaluminate (BaO 6Al2O3) from BaCO3/γ-Al2O3 powders or hydrolyzed alkoxides was studied by analytical electron microscopy. Barium hexaaluminate is produced by a two-step solid-state reaction from BaCO3 and Al2O3 via formation of BaO·Al2O3. Marked grain growth and inclusion of nonequilibrium phase were inevitable in this powder mixture process. However, in an alkoxide-derived precursor, homogeneous mixing of components is attained and hence the formation of BaO·6Al2O3 proceeds readily. Powders obtained by this latter route consisted of fine planar particles with a uniform size and retained a large surface area (20.2 m2/g) even after heating at 1300°C. Electron diffraction results implied that suppression of crystal growth along the c axis is the reason for the large surface area of BaO·6Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号