首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple integral model is presented for a desiccant wheel. The original governing equations for a desiccant wheel were simplified to a set of linear ordinary differential equations and an analytical solution was obtained. A brief analysis is given about the solution regarding the non-dimensional numbers that decide the behavior of a desiccant wheel. From the solution, algebraic expressions were obtained for time-averaged heat and mass transfer rates and the results were compared with a numerical model and a set of experimental data in the literature. In comparison with the numerical model, relative error was found less than 12% at 120 °C regeneration temperature and 10% standard deviation was observed with the experimental data. The analytical model is considered capable of describing a symmetric desiccant wheel realistically.  相似文献   

2.
A study of absorption of ammonia vapour bubbles into a constrained thin-film of ammonia-water solution is presented. A large-aspect-ratio microchannel constrains the thickness of the weak solution film and ammonia vapour bubbles are injected from a porous wall. A counter flowing coolant in a minichannel removes the generated heat of absorption. Experiments and a simple one-dimensional numerical model are used to characterize the absorber performance at a nominal system pressure of 6.2 bar absolute. Effect of varying the mass flow rate of the weak solution, vapour flow rate, solution inlet temperature, and coolant inlet temperature on absorption heat and mass transfer rates and exit subcooling are discussed. Two absorber channel geometries, each of 600 μm nominal depth, are considered: 1) a smooth-wall channel, and 2) a stepped-wall channel that has 2-mm deep trenches across the width of a channel wall. Results indicate that the reduction in coolant inlet temperature significantly enhances the mass transfer rates in both absorber geometries. While the stepped-wall geometry exhibits higher mass transfer rates at lower coolant inlet temperatures of 30 °C and 40 °C, the smooth-wall channel shows higher mass transfer rates at the highest coolant inlet temperature of 58 °C. Both absorption limited and residence time limited conditions are observed with variation of weak solution flow rate at fixed vapour flow rates.  相似文献   

3.
Development of correlations predicting critical mass flow rate and critical pressure distribution through capillary tubes is presented. In order to accomplish such a work, the critical mass flow rate and pressure distribution for nearly 500 operational conditions for R-12, R-22, and R-134a are evaluated. Operational conditions include inlet pressure varying from 800 to 1500 kPa, inlet subcold temperature between 0 and 10 °C, length varying from 1 to 2 m, and inner diameter between 0.5 and 1.5 mm. By performing non-dimensional analysis on numerical data, general correlations are presented to predict the critical mass flow rate through capillary tubes. In addition, by utilizing numerical data for down-stream pressure, non-dimensional analysis is performed to present correlations to predict critical down-stream pressure and pressure distribution through capillary tubes.  相似文献   

4.
在不同的参数条件下,对一次空气通道有冷凝和没有冷凝的板式间接蒸发冷却过程进行了三维数值模拟。根据间接蒸发冷却过程的热力学特性,定义了间接蒸发冷却器的[火用]效率计算公式。通过对不同的入口速度、浓度以及通道宽度条件下的模拟和计算结果进行分析比较,得到了影响换热效率的因素,并从热力学第二定律的角度对换热器进行了[火用]分析。  相似文献   

5.
Numerical simulation has been conducted for the desiccant wheel, which is the crucial component of a desiccant cooling system. As the key operating/design parameters, the rotation speed and the area ratio of regeneration to dehumidification have been examined for a range of regeneration temperature from 50 °C to 150 °C. Optimization of these parameters is conducted based on the wheel performance evaluated by means of Moisture Removal Capacity (MRC). Simulations are focused on the effect of desiccant isotherm on the optimal conditions of these operating/design parameters. Also the effects of the outdoor air temperature and humidity on the optimum design parameters are examined.  相似文献   

6.
The desiccant liquid air membrane energy exchanger is a promising technology used to recover both latent and sensible heat. In this paper, a numerical investigation is carried out to provide the optimal operating fluids properties as well as to enhance the exchanger performance. The physical problem involves a two dimensional model including the momentum, heat and mass transport equations in both air and desiccant liquid channels. The impact of air and desiccant liquid properties on the heat and mass transfer distributions is determined. Optimal values of inlet air and desiccant liquid properties are established. The thermal and mass fields inside desiccant liquid air membrane energy exchanger are numerically presented. This performance investigation provides a solution to improve the heat and mass transfer rates in the addressed membrane based technology.  相似文献   

7.
The pumping speed, conductance, and throughput of turbomolecular pump are investigated by both experiment and numerical simulation. The mass flow rates varying from 0.2 to 19.2 sccm (standard cubic centimeter per minute) for various inlet pressures are conducted in experiment. The experimental and analytic pumping speeds versus the inlet pressures of turbomolecular pump for N2 were revealed. The pumping speeds obtained from experimental and simulation analysis are consistent at inlet pressures ranged from 5 × 10−2 to 8 × 10−2 Pa. When the inlet pressure is below 103 Pa, the conductance decreases because the flow enters the transition flow region. Finally, the influence of inlet pressure on the throughput is also reported.  相似文献   

8.
A number of new desiccant materials have been proposed which have the potential to improve the performance of desiccant wheels being regenerated at low temperature. Desiccant wheels containing two such desiccant materials (zeolite and superadsorbent polymer) were compared with a conventional silica gel desiccant wheel. The superadsorbent polymer desiccant wheel achieved greater dehumidification than the silica gel wheel when dehumidifying high relative humidity air with low temperature (50 °C) regeneration air. The temperature of dehumidified air exiting the polymer wheel was also lower. The zeolite desiccant wheel was generally less effective at dehumidifying air and had a higher pressure drop.  相似文献   

9.
在液体除湿空调中,除湿器是系统的核心部件。本文搭建可用于实验研究的液体除湿空调系统中除湿器的实验台,对塔径300 mm、填料高度800 mm,以Li Cl溶液为除湿剂的除湿器布置测点进行实测。基于Mercel理论,根据热质平衡并结合D.I.Stevens的有效模型,建立适用于该液体除湿空调系统中的除湿器传热传质模型。从实验和理论模型两个方面分析除湿器进口各项参数对除湿量的影响,结果表明:理论值和实验值有很好的一致性,且数据差异较小,说明计算模型适应性良好,能准确的用于该除湿器的性能模拟测试,将实验与理论计算结果进行对比可知:在一定的工况范围内,除湿器的除湿量受进口溶液温度、浓度、质流密度等参数影响较大,其中溶液进口温度越低,除湿效果越显著,溶液进口浓度越低,除湿效果越好;溶液进口质流密度需控制在一定范围进行调节,才能显著提高除湿器性能;空气入口风速、干球温度以及含湿量对除湿出口的空气状态参数影响较弱。  相似文献   

10.
This paper presents new mass transfer performance data of a cross-flow liquid desiccant dehumidification system using a structured packed tower. The structured packing consists of cross-corrugated cellulose paper sheets with a surface area per unit volume ratio of 608 m2 m?3. The liquid desiccant, viz. calcium chloride, flows through the pad from top to bottom, while the air flows horizontally making it a cross-flow configuration. The experimental dehumidification effectiveness from the present study was compared with the widely used Chung's correlation (although developed for counter flow arrangement, as opposed to cross-flow in the current study) and Liu et al.'s correlation. A new empirical correlation was developed for the dehumidification effectiveness, which fitted the experimental data to within ±10%. The effect of varying air and solution inlet conditions and flow rates on the system performance was also quantified in the paper.  相似文献   

11.
A fundamental limitation in the dehumidification performance of adiabatic desiccant wheels occurs due to heating of the air stream to be dried. This results from both the carry-over of heat stored in the wheel and the release of the adsorption heat. Previous authors have identified an isothermal dehumidification process as theoretically superior, though the practicalities of constructing such a wheel have meant that demonstrating the benefit is difficult. Recently experimental data from testing of an internally cooled wheel was published. Here we use this data to calibrate a mathematical heat and mass transfer model of the internally cooled heat exchange desiccant wheel. The model is then used to estimate the performance for selected modifications to the design and materials. The results show that more than a 40% improvement is possible relative to the previously tested cooled wheel. The results have application to the development of desiccant air-conditioners.  相似文献   

12.
Thermal characteristics of ammonia flow boiling in a microfin plate evaporator are experimentally investigated. Titanium microfin heat transfer surface is manufactured to enhance boiling heat transfer. Longitudinally- and laterally-microfined surfaces are used and those performances are compared. Heat transfer coefficient of microfin plate evaporator is also compared with that of plain-surface plate evaporator. The effects of mass flux, heat flux, channel height, and saturation pressure on heat transfer coefficient are presented and discussed. The experiments are conducted for the range of mass flux (5 and 7.5 kg m−2 s−1), heat flux (10, 15, and 20 kW m−2), channel height (1, 2, and 5 mm), and saturation pressure (0.7 and 0.9 MPa). Heat transfer coefficient is compared with that predicted by available empirical correlations proposed by other researchers. Modified correlations using Lockhart-Martinelli parameter to predict heat transfer coefficient are developed and they cover more than 87% of the experimental data.  相似文献   

13.
This paper presents an experimental study on the dehumidification performance of a counter flow liquid desiccant dehumidifier using structured packing with a high specific surface area (650 m2 m−3). New empirical equations correlating the moisture effectiveness and the enthalpy effectiveness with critical inlet parameters are developed, which can be used to conveniently predict the performance of a similar dehumidifier. The empirical correlations are validated using the experimental data of this study, and compared with the experimental data reported by another researcher. The deviations are within ±10% for the former and within ±15% for the latter. The performance of the present type of packing is also compared with other two types of structured packing available in literature. The influences of the inlet conditions of the air and the desiccant as well as the packing height on the dehumidification performance are also investigated and compared with the results reported in previous studies.  相似文献   

14.
为了获得系统重要运行参数对利用冷凝热实现低浓度除湿溶液再生性能的影响,本文在热泵驱动溶液除湿空调系统实验平台上,以低浓度的Li Cl水溶液作为再生盐溶液,再生量和冷凝热利用率作为再生性能的评价指标,对利用冷凝热实现溶液再生过程进行了实验研究。结果表明:空气流量、温度和溶液流量、温度的增加都有利于提高再生量。在夏季典型工况下,当溶液浓度为21.20%~24.91%时,冷凝热利用率在0.416~0.507波动,降低溶液浓度有利于提高冷凝热利用率。并根据实验数据拟合出了利用冷凝热再生除湿溶液过程中的耦合传热传质系数关联式,为后续如何在溶液再生过程中充分利用冷凝热提供了实验依据。  相似文献   

15.
Solar desiccant-based air-conditioning has the potential to significantly reduce cost and/or greenhouse gas emissions associated with cooling of buildings. Parasitic energy consumption for the operation of supply fans has been identified as a major hindrance to achieving these savings. The cooling performance is governed by the trade-off between supplying larger flow-rates of cool air or lower flow-rates of cold air. The performance of a combined solid desiccant-indirect evaporative cooler system is analysed by solving the heat and mass transfer equations for both components simultaneously. Focus is placed on varying the desiccant wheel supply/regeneration and indirect cooler secondary/primary air-flow ratios. Results show that for an ambient reference condition, and 70 °C regeneration temperature, a supply/regeneration flow ratio of 0.67 and an indirect cooler secondary/primary flow ratio of 0.3 gives the best performance with COPe > 20. The proposed cooling system thus has potential to achieve substantial energy and greenhouse gas emission savings.  相似文献   

16.
The flow boiling heat transfer coefficient of the low-GWP (global warming potential) refrigerant HFO-1234yf inside a smooth small-diameter horizontal tube (inner diameter: 2 mm) was experimentally investigated. The local heat transfer coefficient was measured at heat fluxes of 6-24 kW m−2, mass fluxes of 100-400 kg m−2 s−1, an evaporating temperature of 288.15 K, and an inlet vapor quality of 0-0.25. The results show that the effect of heat flux on the heat transfer was large at low vapor quality, while the effect of mass flux was large at high vapor quality. The heat transfer coefficient of HFO-1234yf was almost the same as that of R-134a. The heat transfer coefficients calculated based on correlations with Saitoh et al. agreed well with the measured values compared to other correlations. The measured pressure drop agreed well with that predicted by the Lockhart-Martinelli correlation.  相似文献   

17.
Performance analysis of liquid desiccant dehumidification systems   总被引:5,自引:0,他引:5  
Desiccant systems find applications in a very large variety of industrial and daily usage products including the new HVAC installations. An overview of liquid desiccant technology has been presented in this paper along with a compilation of experimental performance data of liquid desiccant dehumidifiers, empirical dehumidification effectiveness and mass transfer correlations in a useful and easy to read tabular format. The latest trends in this area suggest that hybrid systems are of current interest to HVAC industry, not only for high latent load applications but also for improving indoor air quality. The paper presents a comprehensive comparative parametric analysis of packed bed dehumidifiers for three commonly used desiccant materials viz. triethylene glycol, lithium chloride and calcium chloride, using empirical correlations for dehumidification effectiveness from the literature. The analysis reveals significant variations and anomalies in trends between the predictions by various correlations for the same operating conditions, and highlights the need for benchmarking the performance of desiccant dehumidifiers.  相似文献   

18.
In this paper, the mass transfer performance of the 10 mm metal Pall ring packing for ammonia rectification in ammonia–water absorption refrigeration systems (AARS) is investigated. The experimental setup is described and the experimental procedure and data reduction method are explained. Experimental results of the top vapour temperature, concentration and mass flow rate are presented for different operating conditions, including reflux ratio values from 0.4 to 1 (total reflux conditions). Vapour phase mass transfer coefficients are calculated from the measured data and the results are compared with different mass transfer correlations found in the open literature. In this paper, a correlation is proposed for the packing analysed which was fitted from the experimental data. Finally, a comparison is made between the actual packing height used in the experimental setup and the height required to obtain the same ammonia rectification in AARS with the first generation packings: ½″ ceramic Berl saddles, 15 mm glass Raschig rings and ½″ ceramic Novalox saddles. It was found that a packing height reduction between a factor of 2.5 and 3 is attained with 10 mm metal Pall rings.  相似文献   

19.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

20.
罗纪超 《制冷》2013,(3):7-10
提出了一种新型前置预冷转轮除湿复合空调系统,除湿转轮采用第Ⅲ类吸湿剂。对利用该系统用于独立新风系统的可行性进行了性能分析。结果表明,在华南地区夏季两种典型工况下,该转轮除湿采用再生温度为45℃就可以满足室内湿度的要求;对于相对湿度为90%且温度低于36.7℃的高温高湿工况,该转轮除湿采用再生温度为60℃仍可以满足室内湿度的要求;但与除湿转轮采用第Ⅰ类或第Ⅱ类吸湿剂相比,不能达到更低的送风露点温度。因此,该系统方案所需再生温度较低,较适用于高品质/舒适性空调方面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号