首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Vaccine》2023,41(38):5507-5517
Vaccines for avian influenza (AI) can protect poultry against disease, mortality, and virus transmission. Numerous factors, including: vaccine platform, immunogenicity, and relatedness to the field strain, are known to be important to achieving optimal AI vaccine efficacy. To better understand how these factors contribute to vaccine protection, a systematic meta-analysis was conducted to evaluate efficacy data for vaccines in chickens challenged with highly pathogenic (HP) AI. Data from a total of 120 individual trials from 25 publications were selected and evaluated. Two vaccine criteria were evaluated for their effects on two metrics of protection. The vaccine criteria were: 1) the relatedness of the vaccine antigen and challenge strain in the hemagglutinin 1 domain (HA1) protein sequence; 2) vaccine-induced antibody titers to the challenge virus (VIAC). The metrics of protection were: A) survival of vaccinated chickens vs unvaccinated controls; and B) reduction in oral virus-shedding by vaccinated vs unvaccinated controls 2–4 days post challenge. Three vaccine platforms were evaluated: oil-adjuvanted inactivated whole AI virus, recombinant herpes virus of turkeys (rHVT) vectored, and a non-replicating alpha-virus vectored RNA particle (RP) vaccine. Higher VIAC correlated with greater reduction of virus-shed and vaccine efficacy by all vaccine platforms. Both higher HA1 relatedness and higher VIAC using challenge virus as antigen correlated with better survival by inactivated vaccines and rHVT-vectored vaccines. However, rHVT-vectored and RP based vaccines were more tolerant of variation in the HA1; the relatedness of the HA1 of the vaccine and challenge virus did not significantly correlate with survival with rHVT-vectored vaccines. Protection was achieved with the lowest aa similarity for which there was data, 90–93 % for rHVT vaccines and 88 % for the RP vaccine.  相似文献   

2.
《Vaccine》2023,41(11):1848-1858
Emerging avian influenza viruses pose a high risk to poultry production, necessitating the need for more broadly protective vaccines. Live attenuated influenza vaccines offer excellent protective efficacies but their use in poultry farms is discouraged due to safety concerns related to emergence of reassortant viruses. Vaccination of chicken embryos inside eggs (in ovo) induces early immunity in young chicks while reduces the safety concerns related to the use of live vaccines on farms. However, in ovo vaccination using influenza viruses severely affects the egg hatchability. We previously engineered a high interferon-inducing live attenuated influenza vaccine candidate with an enhanced protective efficacy in chickens. Here, we asked whether we could further modify this high interferon-inducing vaccine candidate to develop an in ovo-compatible live attenuated influenza vaccine. We first showed that the enhanced interferon responses induced by the vaccine is not enough to attenuate the virus in ovo. To reduce the pathogenicity of the virus for chicken embryos, we replaced the hemagglutinin cleavage site of the H7 vaccine virus (PENPKTR/GL) with that of the H6-subtype viruses (PQIETR/GL) and disrupted the ribosomal frameshifting site responsible for viral polymerase acidic X protein expression. In ovo vaccination of chickens with up to 105 median egg infectious dose of the modified vaccine had minimal effects on hatchability while protecting the chickens against a heterologous challenge virus at two weeks of age. This study demonstrates that targeted genetic mutations can be applied to further attenuate and enhance the safety of live attenuated influenza vaccines to develop future in ovo vaccines for poultry.  相似文献   

3.
《Vaccine》2020,38(6):1526-1534
Despite decades of vaccination, surveillance, and biosecurity measures, H5N2 low pathogenicity avian influenza (LPAI) virus infections continue in Mexico and neighboring countries. One explanation for tenacity of H5N2 LPAI in Mexico is the antigenic divergence of circulating field viruses compared to licensed vaccines due to antigenic drift. Our phylogenetic analysis indicates that the H5N2 LPAI viruses circulating in Mexico and neighboring countries since 1994 have undergone antigenic drift away from vaccine seed strains. Here we evaluated the efficacy of a new recombinant fowlpox virus vector containing an updated H5 insert (rFPV-H5/2016), more relevant to the current strains circulating in Mexico. We tested the vaccine efficacy against a closely related subcluster 4 Mexican H5N2 LPAI (2010 H5/LP) virus and the historic H5N2 HPAI (1995 H5/HP) virus in White Leghorn chickens. The rFPV-H5/2016 vaccine provided hemagglutinin inhibition (HI) titers pre-challenge against viral antigens from both challenge viruses in almost 100% of the immunized birds, with no differences in number of birds seroconverting or HI titers among all tested doses (1.5, 2.0, and 3.1 log10 mean tissue culture infectious doses/bird). The vaccine conferred 100% clinical protection and a significant decrease in oral and cloacal virus shedding from 1995 H5/HP virus challenged birds when compared to the sham controls at all tested doses. Virus shedding titers from vaccinated 2010 H5/LP virus challenged birds significantly decreased compared to sham birds especially at earlier time points. Our results confirm the efficacy of the new rFPV-H5/2016 against antigenic drift of LPAI virus in Mexico and suggest that this vaccine would be a good candidate, likely as a primer in a prime-boost vaccination program.  相似文献   

4.
《Vaccine》2020,38(19):3537-3544
BackgroundVaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value.MethodsA new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets.ResultsI.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone.ConclusionsThe I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.  相似文献   

5.
《Vaccine》2019,37(43):6397-6404
BackgroundMarek’s disease (MD) is a lymphoproliferative disease of chickens caused by Marek’s disease virus (MDV), an oncogenic α-herpesvirus. Since 1970, MD has been controlled by widespread vaccination; however, more effective MD vaccines are needed to counter more virulent MDV strains. The bivalent vaccine combination of SB-1 and herpesvirus of turkey (HVT) strain FC126 has been widely used. Nonetheless, the mechanism(s) underlying this synergistic effect has not been investigated.MethodsThree experiments were conducted where SB-1 or HVT were administered as monovalent or bivalent vaccines to newly hatched chickens, then challenged five days later with MDV. In Experiment 1, levels of MDV replication in PBMCs were measured over time, and tumor incidence and vaccinal protection determined. In Experiment 2, MDV and vaccine strains replication levels in lymphoid organs were measured at 1, 5, 10, and 14 days post-challenge (DPC). In Experiment 3, to verify that the bursa was necessary for HVT protection, a subset of chicks were bursectomized and these birds plus controls were similarly vaccinated and challenged, and the levels of vaccinal protection determined.ResultsThe efficacy of bivalent SB-1 + HVT surpasses that of either SB-1 or HVT monovalent vaccines in controlling the level of pathogenic MDV in PBMCs until the end of the study, and this correlated with the ability to inhibit tumor formation. SB-1 replication in the spleen increased from 1 to 14 DPC, while HVT replicated only in the bursa at 1 DPC. The bursa was necessary for immune protection induced by HVT vaccine.ConclusionSynergy of SB-1 and HVT vaccines is due to additive influences of the individual vaccines acting at different times and target organs. And the bursa is vital for HVT to replicate and induce immune protection.  相似文献   

6.
Recently, we described an infectious laryngotracheitis virus (ILTV, gallid herpesvirus 1) recombinant, which had been attenuated by deletion of the viral dUTPase gene UL50, and abundantly expressed the hemagglutinin (HA) gene of a H5N1 type highly pathogenic avian influenza virus (HPAIV) of Vietnamese origin. In the present study, efficacy of this vectored vaccine (ILTV-ΔUL50IH5V) against different H5 HPAIV was evaluated in 6-week-old chickens. After a single ocular immunization all animals developed HA-specific antibodies, and were protected against lethal infection not only with the homologous HPAIV isolate A/duck/Vietnam/TG24-01/2005 (H5N1, clade 1, hemagglutinin amino acid sequence identity 100%), but also with heterologous HPAIV A/swan/Germany/R65/2006 (H5N1, clade 2.2, identity 96.1%) or HPAIV A/chicken/Italy/8/98 (H5N2, identity 93.8%). No symptoms of disease were observed after challenge with the H5N1 viruses, and only 20% of H5N2 challenged animals developed minimal clinical signs. Real-time RT-PCR analyses of oropharyngeal swabs revealed limited challenge virus replication, but the almost complete absence of HPAIV RNA from cloacal swabs indicated that no generalized infections occurred. Thus, unlike several previous vectors, ILTV-ΔUL50IH5V was able to protect chickens against different HPAIV isolates of the H5 subtype. Vaccination with HA-expressing ILTV also allowed differentiation of immunized from AIV-infected animals by serological tests for antibodies against influenza virus nucleoprotein.  相似文献   

7.
《Vaccine》2019,37(29):3902-3910
The identification of adjuvants that promote lasting antigen-specific immunity and augment vaccine efficacy are integral to the development of new protein-based vaccines. The Ebola virus-like particle (VLP) vaccine expressing Ebola virus glycoprotein (GP) and matrix protein (VP40) was used in this study to evaluate the ability of TLR4 agonist glucopyranosyl lipid adjuvant (GLA) formulated in a stable emulsion (SE) to enhance immunogenicity and promote durable protection against mouse-adapted Ebola virus (ma-EBOV). Antibody responses and Ebola-specific T cell responses were evaluated post vaccination. Survival analysis after lethal ma-EBOV challenge was performed 4 weeks and 22 weeks following final vaccination. GLA-SE enhanced EBOV-specific immunity and resulted in long-term protection against challenge with ma-EBOV infection in a mouse model. Specifically, GLA-SE elicited Th1-skewed antibodies and promoted the generation of EBOV GP-specific polyfunctional T cells. These results provide further support for the utility of TLR4 activating GLA-SE-adjuvanted vaccines.  相似文献   

8.
9.
Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans.  相似文献   

10.
《Vaccine》2021,39(27):3560-3564
Adenoviruses cause economically important diseases in vertebrates. Effective vaccines against adenoviral diseases are currently lacking. Here, we report a highly conserved epitopic region on hexon proteins of adenoviruses that generate a strong immune response when used as a virus-like-particle (VLP) vaccine, produced by inserting the epitopic region into the core protein of hepatitis B virus. For evaluation of its protective efficacy, the epitopic region from a representative adenovirus, fowl adenovirus serotype 4 (FAdV-4), was tested as a VLP vaccine which conferred 90% protection against challenge with a virulent FAdV-4 isolate in chickens. Importantly, such a high level of protection is not achieved when the epitopic region is employed as a part of a subunit vaccine. As the sequence and the structure of the epitopic region are highly conserved in hexon proteins of adenoviruses, the epitopic region could be employed as a promising VLP vaccine candidate against adenoviral diseases, in general.  相似文献   

11.
《Vaccine》2020,38(2):350-354
PurposeReceiving influenza vaccination may increase the risk of other respiratory viruses, a phenomenon known as virus interference. Test-negative study designs are often utilized to calculate influenza vaccine effectiveness. The virus interference phenomenon goes against the basic assumption of the test-negative vaccine effectiveness study that vaccination does not change the risk of infection with other respiratory illness, thus potentially biasing vaccine effectiveness results in the positive direction. This study aimed to investigate virus interference by comparing respiratory virus status among Department of Defense personnel based on their influenza vaccination status. Furthermore, individual respiratory viruses and their association with influenza vaccination were examined.ResultsWe compared vaccination status of 2880 people with non-influenza respiratory viruses to 3240 people with pan-negative results. Comparing vaccinated to non-vaccinated patients, the adjusted odds ratio for non-flu viruses was 0.97 (95% confidence interval (CI): 0.86, 1.09; p = 0.60). Additionally, the vaccination status of 3349 cases of influenza were compared to three different control groups: all controls (N = 6120), non-influenza positive controls (N = 2880), and pan-negative controls (N = 3240). The adjusted ORs for the comparisons among the three control groups did not vary much (range: 0.46–0.51).ConclusionsReceipt of influenza vaccination was not associated with virus interference among our population. Examining virus interference by specific respiratory viruses showed mixed results. Vaccine derived virus interference was significantly associated with coronavirus and human metapneumovirus; however, significant protection with vaccination was associated not only with most influenza viruses, but also parainfluenza, RSV, and non-influenza virus coinfections.  相似文献   

12.
《Vaccine》2023,41(19):3024-3027
Flaviviruses are antigenically related. We evaluated the immunogenicity and efficacy of Takeda’s purified inactivated Zika vaccine (PIZV) candidate in macaques previously vaccinated with several commercially available heterologous flavivirus vaccines. Heterologous flavivirus vaccination did not elicit Zika virus (ZIKV) neutralizing antibodies and did not impact neutralizing antibody titers after one dose of PIZV. After a second PIZV dose previous vaccination with flavivirus vaccines had variable impact on ZIKV neutralizing antibody titers. However, all macaques were protected against viremia after Zika virus challenge 8–12 months post-PIZV vaccination. Therefore, vaccine-induced immunity against heterologous flavivirus vaccines does not impact PIZV efficacy in macaques.  相似文献   

13.
《Vaccine》2021,39(14):1933-1942
The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.  相似文献   

14.
《Vaccine》2019,37(51):7482-7492
BackgroundNative American populations experience a substantial burden of pneumococcal disease despite use of highly effective pneumococcal conjugate vaccines (PCVs). Protein-based pneumococcal vaccines may extend protection beyond the serotype-specific protection elicited by PCVs.MethodsIn this phase IIb, double-blind, controlled trial, 6–12 weeks-old Native American infants randomized 1:1, received either a protein-based pneumococcal vaccine (dPly/PhtD) containing pneumolysin toxoid (dPly, 10 µg) and pneumococcal histidine triad protein D (PhtD, 10 µg) or placebo, administered along with 13-valent PCV (PCV13) at ages 2, 4, 6 and 12–15 months. Other pediatric vaccines were given per the routine immunization schedule. We assessed vaccine efficacy (VE) against acute otitis media (AOM) and acute lower respiratory tract infection (ALRI) endpoints. Immunogenicity, reactogenicity and unsolicited adverse events were assessed in a sub-cohort and serious adverse events were assessed in all children.Results1803 infants were randomized (900 dPly/PhtD; 903 Control). VE against all episodes of American Academy of Pediatrics (AAP)-defined AOM was 3.8% (95% confidence interval: −11.4, 16.9). Point estimates of VE against other AOM outcomes ranged between 2.9% (−9.5, 14.0) and 5.2% (−8.0, 16.8). Point estimates of VE against ALRI outcomes ranged between −4.4% (−39.2, 21.8) and 2.0% (−18.3, 18.8). Point estimates of VE tended to be higher against first than all episodes but the confidence intervals included zero. dPly/PhtD vaccine was immunogenic and had an acceptable reactogenicity and safety profile after primary and booster vaccination in Native American infants.ConclusionsThe dPly/PhtD vaccine was immunogenic and well tolerated, however, incremental efficacy in preventing AAP-AOM over PCV13 was not demonstrated.Clinical trials registrationNCT01545375 (www.clinicaltrials.gov)  相似文献   

15.
《Vaccine》2022,40(12):1837-1845
In the past decades, fowl adenovirus (FAdV)-related diseases became an increasing concern for the poultry industry worldwide. Various immunization strategies against FAdVs have been experimentally investigated, with a particular focus on subunit vaccines against hepatitis-hydropericardium syndrome (HHS), caused by FAdV serotype 4, and inclusion body hepatitis (IBH), caused by serotypes 2, 8a, 8b and 11. In this study, we extended our innovative concept of recombinant chimeric fiber proteins to design a novel chimera combining epitopes from two distinct serotypes, FAdV-4 and -11, and we investigated its efficacy to simultaneously protect chickens against HHS and IBH. Specific pathogen-free chickens were vaccinated with the novel recombinant chimeric fiber and subsequently challenged with either a HHS- or IBH-causing strain. Vaccinated/challenged birds exhibited a reduction of clinical signs, limited hepatomegaly and lower levels of AST compared to the respective challenge controls. Furthermore, the vaccine prevented atrophy of HHS-affected lymphoid organs, such as thymus and bursa of Fabricius, and viral load in the target organs was significantly reduced. Clinical protection was associated with high levels of pre-challenge antibodies measured on ELISA plates coated with the vaccination antigen. Interestingly, the development of neutralizing antibodies was limited against FAdV-11 and absent against FAdV-4, indicating that protection granted by such an antigen may be linked to different immunization pathways. In conclusion, we proved that the concept of chimeric fiber vaccines can be extended across viral species boundaries and represents the first single-component FAdV subunit vaccine providing comprehensive protection against different FAdV-associated diseases.  相似文献   

16.
Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249–59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343–52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5′-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived without showing any clinical signs. Real-time RT-PCR indicated limited challenge virus replication after vaccination with H5-ILTV only, which was completely blocked after coimmunization with N1-ILTV. Thus, chickens can be protected from H5N1 HPAIV-induced disease by live vaccination with an attenuated hemagglutinin-expressing ILTV recombinant, and efficacy can be further increased by coadministration of an ILTV mutant expressing neuraminidase. Furthermore, chickens vaccinated with ILTV vectors can be easily differentiated from influenza virus-infected animals by the absence of serum antibodies against the AIV nucleoprotein.  相似文献   

17.
《Vaccine》2020,38(2):143-149
Recently, outbreaks of adenoviral gizzard erosion (AGE) have been documented in pullets and layers housed free range and in enriched cage systems characterized by increased mortality and a negative impact on egg production. In the present study the pathogenicity of a fowl adenovirus serotype 1 (FAdV-1) field strain as well as the aetiological role of a FAdV-8a strain, both isolated from AGE affected pullets, were investigated in vivo in 20-week-old specific-pathogen-free (SPF) layer-type chickens. Furthermore, the efficacy of a single (week 17) and double (week 14 and 17) application of a live vaccine consisting of an apathogenic FAdV-1 (CELO strain) against challenge with virulent FAdV-1 was investigated.For the first time, AGE was successfully reproduced in adult birds after oral infection of 20-week-old SPF birds with a virulent FAdV-1 field isolate, characterized by pathological changes of the gizzard from 7 days post challenge onwards. In addition, a negative impact of the FAdV-1 infection on the development of the reproductive tract was observed. Thus, confirming the pathogenicity and aetiological role of FAdV-1 in the development of AGE and economic losses due to AGE in layers. In contrast, no pathological changes were observed in birds infected with FAdV-8a.Independent of a single or double application of the live FAdV-1 vaccine strain CELO, no gross pathological changes were observed in gizzards post challenge with the virulent FAdV-1, indicating that complete protection of layers against horizontal induction of AGE was achieved. Nonetheless, virulent FAdV-1 was detected in cloacal swabs and gizzards in both vaccinated groups post challenge determined by the application of an amplification refractory mutation system quantitative PCR used to differentiate between vaccine and challenge strains.  相似文献   

18.
《Vaccine》2022,40(19):2679-2695
Vaccinations are essential for preventing infectious diseases in children with chronic diseases as they have increased risk of infection from frequent use of biologics. Response to immunizations in this group is not well known.ObjectiveA systematic review was performed to evaluate three primary outcomes: efficacy; immunogenicity; and safety of vaccines in children with chronic conditions treated with biologics.MethodsThe protocol for our systematic review and meta-analysis was registered and published with PROSPERO. We searched electronic bibliographic databases for studies published from 2009 to 2019, focusing on vaccinations in children with chronic conditions treated with biologics.ResultsWe retrieved 532 records. Thirty-one full-text articles were selected, and 14 were included in the meta-analysis. No significant publication bias was found. Efficacy: limited data are available regarding the efficacy of vaccination, as most studies have focused on immunogenicity as surrogate outcome for efficacy. Immunogenicity: patients receiving anti-TNF-alpha therapy had a statistically significant risk of poor seroconversion (p = 0.028) and seroprotection by the serotype B influenza vaccine [inflammatory bowel disease (IBD) p = 0.013; juvenile idiopathic arthritis (JIA) p = 0.004]. We found adequate responses with H1N1 and H3N2 serotypes. Few studies existed for pneumococcal, hepatitis A virus, hepatitis B virus, varicella-zoster virus, Measles Mumps Rubella virus, and multiple vaccine administration. Safety: vaccine administration was not associated with serious side effects, but JIA patients on anti-TNF alpha therapy had a statistically significant risk of presenting with myalgia or arthralgia postinfluenza vaccine (p = 0.014).ConclusionsMore evidence concerning efficacy, immunogenicity, and safety of vaccinations is needed to guide physicians in the vaccine decision process for this pediatric population.  相似文献   

19.
《Vaccine》2022,40(9):1271-1281
BackgroundNew influenza vaccines are needed to increase vaccine efficacy. Adjuvants may allow hemagglutinin (HA) dose-sparing with enhanced immunogenicity. MAS-1 is an investigational low viscosity, free-flowing, water-in-oil emulsion-based adjuvant/delivery system comprised of stable nanoglobular aqueous droplets.MethodsA phase 1, double-blind, safety and immunogenicity, HA dose escalation, randomized clinical trial was conducted. MAS-1 adjuvant with 1, 3, 5 or 9 µg per HA derived from licensed seasonal trivalent high dose inactivated influenza vaccine (IIV, Fluzone HD 60 µg per HA) in a 0.3 mL dose were compared to standard dose IIV (Fluzone SD, 15 µg per HA). Safety was measured by reactogenicity, adverse events, and clinical laboratory tests. Serum hemagglutination inhibition (HAI) antibody titers were measured for immunogenicity.ResultsSeventy-two subjects, aged 18–47 years, received one dose of either 0.3 mL adjuvanted vaccine or SD IIV intramuscularly. Common injection site and systemic reactions post-vaccination were mild tenderness, induration, pain, headache, myalgia, malaise and fatigue. All reactions resolved within 14 days post-vaccination. Safety laboratory measures were not different between groups. Geometric mean antibody titers, geometric mean fold increases in antibody titer, seroconversion rates and seroprotection rates against vaccine strains were in general higher and of longer duration (day 85 and 169 visits) with MAS-1-adjuvanted IIV at all doses of HA compared with SD IIV. Adjuvanted vaccine induced higher antibody responses against a limited number of non-study vaccine influenza B and A/H3N2 viruses including ones from subsequent years.ConclusionMAS-1 adjuvant in a 0.3 mL dose volume provided HA dose-sparing effects without safety concerns and induced higher HAI antibody and seroconversion responses through at least 6 months, demonstrating potential to provide greater vaccine efficacy throughout an influenza season in younger adults. In summary, MAS-1 may provide enhanced, more durable and broader protective immunity compared with non-adjuvanted SD IIV.Clinical Trial Registry: ClinicalTrials.gov # NCT02500680.  相似文献   

20.
《Vaccine》2022,40(30):4026-4037
The All-Japan Influenza Vaccine Study Group has been developing a more effective vaccine than the current split vaccines for seasonal influenza virus infection. In the present study, the efficacy of formalin- and/or β-propiolactone-inactivated whole virus particle vaccines for seasonal influenza was compared to that of the current ether-treated split vaccines in a nonhuman primate model. The monovalent whole virus particle vaccines or split vaccines of influenza A virus (H1N1) and influenza B virus (Victoria lineage) were injected subcutaneously into naïve cynomolgus macaques twice. The whole virus particle vaccines induced higher titers of neutralizing antibodies against H1N1 influenza A virus and influenza B virus in the plasma of macaques than did the split vaccines. At challenge with H1N1 influenza A virus or influenza B virus, the virus titers in nasal swabs and the increases in body temperatures were lower in the macaques immunized with the whole virus particle vaccine than in those immunized with the split vaccine. Repertoire analyses of immunoglobulin heavy chain genes demonstrated that the number of B-lymphocyte subclones was increased in macaques after the 1st vaccination with the whole virus particle vaccine, but not with the split vaccine, indicating that the whole virus particle vaccine induced the activation of vaccine antigen-specific B-lymphocytes more vigorously than did the split vaccine at priming. Thus, the present findings suggest that the superior antibody induction ability of the whole virus particle vaccine as compared to the split vaccine is attributable to its stimulatory properties on the subclonal differentiation of antigen-specific B-lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号