首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MR imaging of epidermoids at the cerebellopontine angle.   总被引:4,自引:0,他引:4  
The most common location of intracranial epidermoid is the cerebellopontine angle (CPA). The present study compared the visibility of epidermoid at the CPA in various pulse sequences. Seven patients with epidermoid at the CPA underwent conventional MR imaging (T(1)-, T(2)- and proton density-weighted imaging) as well as diffusion-weighted echo-planar imaging. Fast fluid-attenuated inversion recovery (FLAIR) sequences, magnetization transfer contrast (MTC) sequences, and MR cisternography were employed for selected patients. The signal intensity of the lesions relative to cerebrospinal fluid (CSF), the degree of lesion demarcation and the displacement of surrounding structures were evaluated. Proton density-weighted imaging depicted the lesions as hyper-intense to CSF with clearer delineation than T(1)- and T(2)-weighted imaging. Diffusion-weighted imaging depicted all lesions as strongly hyper-intense relative to CSF and brain tissue. FLAIR sequences depicted the lesions with mixed signal intensities but with poor-to-medium demarcation. MTC imaging increased delineation of the lesions to some degree. MR cisternography depicted the lesions as hypo-intense to CSF and clearly showed the anatomical relation to neighboring nerves and vessels. We concluded that diffusion-weighted imaging could specifically reveal an epidermoid at the CPA as a strongly hyper-intense lesion, and that MR cisternography is mandatory for preoperative planning.  相似文献   

2.
MRI Fast Fluid Attenuated Inversion Recovery (FLAIR) sequences have become established in a wide range of central nervous system diseases. FLAIR images demonstrate excellent lesion conspicuity in a variety of disease processes. The fast FLAIR technique although giving heavily T2 weighted images combined with suppressed CSF resulting in high contrast-to-noise ratios for long T2 lesions within the brain parenchyma is susceptible to several potential imaging artefacts, including CSF related artefacts degrading the diagnostic value of the scans.  相似文献   

3.

Objectives

To evaluate the utility of BLADE fluid-attenuated inversion recovery images (FLAIR) magnetic resonance (MR) imaging compared to conventional FLAIR for the detection of arterial hyperintensity (AH) in hyperacute territorial infarction.

Methods

We retrospectively analysed MR images of patients with hyperacute (<6 h) territorial infarction over a 9-month study period. Special attention was paid to the presence or absence of AH in the frontal, parietal and temporal lobes and the number of AHs in the sylvian fissure. We also evaluated the presence of three kinds of artefacts on BLADE FLAIR and conventional FLAIR images.

Results

AH was seen in 41 (91 %) patients with conventional FLAIR and 45 (100 %) patients with BLADE FLAIR images. More instances of AH were detected in the frontal, parietal and temporal lobes and within the sylvian fissure using BLADE FLAIR. Motion artefacts, pulsation artefacts from the sigmoid sinus and incomplete cerebrospinal fluid (CSF) nulling that reduced image quality were observed more frequently on conventional FLAIR images than on BLADE FLAIR images.

Conclusions

BLADE FLAIR sequences are more sensitive than conventional FLAIR for the detection of AH in hyperacute territorial infarctions and provide better image quality by reducing artefacts. They may be used in place of conventional FLAIR for patients with hyperacute stroke.

Key points

? Arterial hyperintensity is an important sign in patients with acute territorial infarctions. ? BLADE FLAIR sequences are sensitive for the detection of AH. ? BLADE FLAIR sequences provide better image quality by reducing artefacts.  相似文献   

4.
PURPOSE: To compare diffusion-weighted echo-planar imaging (DW) with spin-echo (SE), and fluid-attenuated inversion recovery (FLAIR) sequences in the evaluation of epidermoid cysts (ECs), and to evaluate T2 shine-through effect. MATERIALS AND METHODS: Fifteen patients were imaged prospectively in two different 1.5 T magnetic resonance (MR) units with standard head coils with SE, FLAIR and DW echo planar imaging sequences. The qualitative and quantitative assessments were performed by two radiologists in consensus. Apparent diffusion coefficient (ADC) values were obtained from all ECs. Exponential DW images are obtained in 11 cases to eliminate T2 shine-through effects. The results are analyzed with variance analysis (ANOVA) and Bonferroni t method. RESULTS: FLAIR sequence was superior to T1- and T2-weighted sequences in showing ECs. In 13 cases, the borders of the lesions could be delineated from the surrounding structures with only DW imaging where ECs were markedly hyperintense. The ADC values of ECs are significantly lower than CSF (P < 0.001), and significantly higher than deep white matter (P < 0.01). On exponential DW images, ECs had similar intensity with brain parenchyma showing that the real cause of the hyperintensity of the lesions on trace images is the enhanced T2 effect of the tissue. CONCLUSION: FLAIR sequence is superior to the conventional MR sequences in demonstrating the ECs and DW imaging is superior to other MR sequences in delineating the borders of the ECs. Exponential DW images had shown that the hyperintensity in the trace images are caused by increased T2 effect of the lesion rather than the decrease in ADC values.  相似文献   

5.
AIM: The aim of this study was to compare the performance of three fluid attenuated inversion recovery (FLAIR) pulse sequences for control of cerebrospinal fluid (CSF) and blood flow artifacts in imaging of the brain. The first of these sequences had an initial sinc inversion pulse which was followed by conventional k-space mapping. The second had an initial sinc inversion pulse followed by k-space re-ordered by inversion time at each slice position (KRISP) and the third had an adiabatic initial inversion pulse followed by KRISP. MATERIALS AND METHODS: Ten patients with established disease were studied with all three pulse sequences. Seven were also studied with the adiabatic KRISP sequence after contrast enhancement. Their images were evaluated for patient motion artifact, CSF and blood flow artifact as well as conspicuity of the cortex, meninges, ventricular system, brainstem and cerebellum. The conspicuity of lesions and the degree of enhancement were also evaluated. RESULTS: Both the sinc and adiabatic KRISP FLAIR sequences showed better control of CSF and blood flow artifacts than the conventional FLAIR sequence. In addition the adiabatic KRISP FLAIR sequence showed better control of CSF artifact at the inferior aspect of the posterior fossa. The lesion conspicuity was similar for each of the FLAIR sequences as was the degree of contrast enhancement to that shown with a T(1)weighted spin echo sequence. CONCLUSION: The KRISP FLAIR sequence controls high signal artifacts from CSF flow and blood flow and the adiabatic pulse controls high signal artifacts due to inadequate inversion of the CSF magnetization at the periphery of the head transmitter coil. The KRISP FLAIR sequence also improves cortical and meningeal definition as a result of an edge enhancement effect. The effects are synergistic and can be usefully combined in a single pulse sequence. Curati, W. L.et al. (2001)Clinical Radiology56, 375-384 Copyright 2001 The Royal College of Radiologists.  相似文献   

6.
BACKGROUND AND PURPOSE: T1-, T2-, and proton density (PD)-weighted sequences are used to characterize the content of cystic intracranial lesions. Fluid-attenuated inversion recovery (FLAIR) MR sequences produce T2-weighted images with water signal saturation. Therefore, we attempted to verify whether FLAIR, as compared with conventional techniques, improves the distinction between intracranial cysts with a free water-like content versus those filled with a non-free water-like substance and, consequently, aids in the identification of these lesions as either neoplastic/inflammatory or maldevelopmental/porencephalic. METHODS: Forty-five cystic intracranial lesions were studied using T1-weighted, T2-weighted, FLAIR, and PD-weighted sequences. By means of clustering analysis of the ratio in signal intensity between the cystic intracranial lesions and CSF, the intracranial lesions were classified as filled with a free water-like content or with a non-free water-like substance. The results were compared with their true content as evaluated either histologically or on the basis of clinical, neuroradiologic, and follow-up features (necrotic material, 13 cases; accumulation of intercellular proteinaceous/myxoid material, eight cases; keratin, five cases; CSF, 19 cases). Cystic intracranial lesions were divided into two clinical groups, neoplastic/inflammatory and maldevelopmental/porencephalic, to evaluate the level of accuracy of each MR technique. The difference in absolute value signal intensity between CSF and cystic intracranial lesion content was calculated on FLAIR and PD-weighted images. RESULTS: PD-weighted and FLAIR sequences, unlike T1- and T2-weighted sequences, accurately depicted all cystic intracranial lesions containing necrotic or myxoid/proteinaceous intercellular material (non-free water-like) and most CSF-containing cystic intracranial lesions (free water-like). All imaging techniques inaccurately showed some of the keratin-containing cystic intracranial lesions and pineal cysts. The overall error rate was 22% for T1-weighted, 27% for T2-weighted, 9% for FLAIR, and 13% for PD-weighted sequences. The signal intensity difference between CSF and cystic intracranial lesion content was higher with FLAIR imaging. CONCLUSIONS: FLAIR imaging depicts far more accurately the content of cystic intracranial lesions and better reveals the distinction between maldevelopmental/porencephalic and neoplastic/inflammatory lesions than do conventional sequences. FLAIR has the added advantage of a higher signal intensity difference between cystic intracranial lesions and CSF.  相似文献   

7.
PURPOSETo assess the usefulness of fast fluid-attenuated inversion-recovery (FLAIR) MR sequences in the diagnosis of intracranial infectious diseases.METHODSWe compared fast FLAIR images with conventional spin-echo images (T1- and T2-weighted) obtained in 20 patients with infectious diseases (six with encephalitis, five with brain abscesses, three with meningitis, two with meningoencephalitis, two with Creutzfeldt-Jakob disease, one with epidural empyema, and one with cysticercosis). Two neuroradiologists independently reviewed the FLAIR images and compared them with the conventional spin-echo images, obtaining agreement in all patients.RESULTSFLAIR images of diagnostic quality were obtained in 18 patients. In two patients, FLAIR images were degraded by motion. Lesions in the patients with encephalitis and meningoencephalitis were better delineated on FLAIR images than on spin-echo images. FLAIR images clearly depicted lesions in the basal ganglia in both patients with Creutzfeldt-Jakob disease. In patients with brain abscess, meningitis, cysticercosis, and epidural empyema, FLAIR images provided no more information than conventional spin-echo images, and the lesions were seen better on postcontrast T1-weighted spin-echo images.CONCLUSIONFast FLAIR images showed pathologic changes in intracranial infectious diseases better than or as well as conventional T2- and proton density-weighted spin-echo sequences. However, postcontrast T1-weighted spin-echo sequences resulted in better visibility of abscess, meningitis, cysticercosis, and epidural empyema than did FLAIR images.  相似文献   

8.
The aim of this study was to compare conventional 2D FLAIR and single-slab 3D FLAIR sequences in the detection of lesions in patients with multiple sclerosis. Eight patients with MS were examined at 3.0 T by using a 2D FLAIR sequence and a single-slab 3D FLAIR sequence. A comparison of lesion detectability was performed for the following regions: periventricular, nonperiventricular/juxtacortical and infratentorial. The contrast-to-noise ratios (CNRs) between lesions and brain tissue and CSF were calculated for each sequence. A total of 424 lesions were found using the 2D FLAIR sequence, while with the 3D FLAIR sequence 719 lesions were found. With the 2D FLAIR sequence, 41% fewer lesions were detected than with the 3D FLAIR sequence. Further, 40% fewer supratentorial and 62.5% fewer infratentorial lesions were found with the 2D FLAIR sequence. In images acquired with the 3D FLAIR sequence, the lesions had significantly higher CNRs than in images acquired with the 2D FLAIR sequence. These are the first results using a single-slab 3D FLAIR sequence at 3.0 T for detection of lesions in patients with MS. With the 3D FLAIR sequence significantly higher CNRs were achieved and significantly more lesions in patients with MS were detected.  相似文献   

9.
BACKGROUND AND PURPOSE: Our purpose was to test a new variant of the fluid-attenuated inversion-recovery (FLAIR) sequence that was designed to reduce CSF and blood flow artifacts by use of a non-slice-selective inversion pulse and k-space reordered by inversion time at each slice position (KRISP). METHODS: With the KRISP FLAIR sequence, the slice order was cycled so that each inversion time (TI) was associated with a region of k-space rather than a particular slice, and the effective inversion time (TI(eff)) was chosen to null the signal from CSF. Scans were obtained with both conventional and KRISP FLAIR sequences. Studies were performed in 20 adult patients with a variety of brain diseases. Images were evaluated for artifacts from patient motion, CSF, and blood flow, and scored on a four-point scale. The conspicuity of the cortex, meninges, ventricular system, brain stem, and cerebellum was evaluated, as was lesion number and conspicuity. RESULTS: The KRISP FLAIR sequence showed more patient motion artifacts but had a pronounced advantage over the conventional sequence in control of CSF artifacts around the foramen of Munro, in the third ventricle, aqueduct, and fourth ventricle, as well as in the basal cisterns and around the brain stem and cerebellum. Blood flow artifacts from the internal carotid, basilar, and vertebral arteries were also much better controlled. Spurious high signal in the sylvian branches of the middle cerebral artery was eliminated. The meninges, cortex, ventricular system, brain stem, and cerebellum were better seen due to improved artifact suppression and an edge enhancement effect. CONCLUSION: The KRISP FLAIR sequence can suppress CSF and blood flow artifacts and improve the conspicuity of the meninges, cortex, brain stem, and cerebellum. Its major disadvantage is its duration, which may be reducible with a fast spin-echo version.  相似文献   

10.
Fluid-attenuated inversion recovery (FLAIR) imaging with prolonged inversion times allows generation of highly T2-weighted images of the brain with suppression of cerebrospinal fluid signal. Such sequences result in high lesion contrast and allow visualisation of abnormalities not seen with conventional T2-weighted spin-echo sequences. We used FLAIR sequences, proton density (PD) and standard T2-weighted images to examine lesion number and distribution in ten patients with clinically definite relapsing multiple sclerosis (MS). We also studied the extent and distribution of blood-brain-barrier breakdown by gadolinium-enhanced T1-weighted images. FLAIR sequences proved feasible both in terms of acquisition time and image quality using a 0.5 T imager. FLAIR imaging allowed identification of 45 % more high-signal lesions than T2-weighted or PD images in the 10 patients. In particular, 60 % more lesions within the cortex and at the grey-white interface were identified. Cortical lesions, none of which enhanced following gadolinium-DTPA injection, were present in seven of the ten patients studied. Of all lesions identified, 8 % were cortical. FLAIR sequences are more sensitive to cortical and subcortical lesions in patients with active demyelination.  相似文献   

11.
We tried to investigate if magnetic resonance (MR) fluid-attenuated inversion recovery (FLAIR) imaging can be used as a routine brain screening examination instead of spin-echo T2-weighted imaging. Three hundred and ninety-four patients with clinically suspected brain diseases were randomly selected and examined with both brain MR FLAIR and T2-weighted imaging on the axial plane. These two imaging techniques were evaluated by two neuroradiologists as to which imaging was better for routine brain T2-weighted imaging. In 123 of 394 cases (31%), FLAIR imaging was superior to spin-echo T2-weighted imaging. Especially in cases with inflammatory diseases, traumatic diseases and demyelinating diseases, FLAIR imaging was particularly useful. Small lesions bordering cerebrospinal fluid (CSF) are often detected only by FLAIR imaging. In 259 cases (66%), including 147 normal cases (37%), they were equally evaluated. Only in 12 cases (3%) was conventional T2-weighted imaging superior to FLAIR imaging. Cerebrovascular lesions like cerebral aneurysm and Moyamoya disease could not be detected on FLAIR images because these structures were obscured by a low signal from the CSF. Also, because old infarctions tend to appear as low signal intensity on FLAIR images, the condition was sometimes hard to detect. Finally, FLAIR imaging could be used as routine brain T2-weighted imaging instead of conventional spin-echo T2-weighted imaging if these vascular lesions were watched.  相似文献   

12.
BACKGROUND AND PURPOSE: T1-weighted spin-echo imaging has been widely used to study anatomic detail and abnormalities of the brain; however, the image contrast of this technique is often poor, especially at low field strengths. We tested a new pulse sequence, T1-weighted fluid-attenuated inversion recovery (FLAIR), which provides good contrast between lesions, surrounding edematous tissue, and normal parenchyma at low field strengths and at acquisition times comparable to those of T1-weighted spin-echo imaging. METHODS: Thirteen patients with brain lesions underwent T1-weighted spin-echo and T1-weighted FLAIR imaging during the same imaging session. T1-weighted spin-echo and T1-weighted FLAIR images were compared on the basis of four quantitative (lesion-white matter [WM] contrast-to-noise ratio [CNR], lesion-CSF CNR, gray matter-WM CNR, and WM-CSF CNR) and three qualitative criteria (conspicuousness of lesions, image artifacts, and overall image contrast). RESULTS: CNRs obtained with T1-weighted FLAIR were comparable but statistically superior to those obtained with T1-weighted spin-echo imaging. In general, T1-weighted FLAIR and T1-weighted spin-echo imaging produced comparable image artifacts. Conspicuousness of lesions and the overall image contrast were judged to be superior on T1-weighted FLAIR images. CONCLUSION: T1-weighted FLAIR imaging may be a valuable alternative to conventional T1-weighted imaging, because the former technique offers superior image contrast at low field strengths and comparable acquisition times.  相似文献   

13.
BACKGROUND AND PURPOSE: Partial volume with CSF is known to contaminate the quantification of white matter anisotropy depicted by diffusion tensor imaging (DTI). We hypothesized that the FLAIR technique helps to improve DTI white matter tractography in the normal adult brain by eliminating CSF partial volume effects. METHODS: Seven healthy adults aged 23-37 underwent both conventional and FLAIR DTI at 1.5T. Each subject was imaged five times. Neural fiber tractography was performed with both sequences by using two algorithms: a voxel-based method (EZ-tracing) with global seed points and another based on subvoxel tractography (tensor deflection) by using manual encircling of local seed points. Total volume of the fibers tracked was compared for the two types of images. RESULTS: Fiber tracking was substantially most successful on FLAIR DTI near the lateral ventricles and the sulci, where CSF partial volume effects were likely present. Minor false tracts on FLAIR images, possibly due to a reduced signal-to-noise ratio, were found in regions relatively free of CSF contamination; however, they did not affect tracking of major periventricular white matter bundles, such as those related to the corpus callosum or the corona radiata. When we excluded false tracts, the FLAIR technique depicted an average of 17% more fibers in volume than conventional DTI in the periventricular regions (P < .0005, paired Student t test). CONCLUSION: Despite the reduction of signal-to-noise ratio and longer imaging times, FLAIR improved tractography by eliminating CSF partial volume effects.  相似文献   

14.
The purpose of this study was to assess the diagnostic potential of a new dark fluid sequence, high intensity reduction (HIRE) in the diagnostic workup of patients with cerebral gliomas. The HIRE sequence utilizes a very long T(2) value of the cerebrospinal fluid (CSF) to suppress its high signal contribution in T(2)-weighted imaging by a image subtraction technique. Fifteen patients with histologically confirmed cerebral gliomas were examined with T(2)-weighted fast spin-echo (FSE), T(1)-weighted SE, fast fluid-attenuated inversion recovery (FLAIR), and HIRE imaging using identical scan parameters. In patients with enhancing lesions, fast FLAIR and HIRE were added to the contrast-enhanced T(1)-weighted SE images. Images were analyzed in a qualitative and quantitative evaluation. In the qualitative analysis, lesion detection, lesion delineation, and differentiation between enhancing and non-enhancing tumor tissue were assessed in a two-reader study. For the quantitative analysis, lesion-to-background and lesion-to-CSF contrast and contrast-to-noise ratios were determined in a region of interest analysis. HIRE achieved a significant reduction of the CSF signal without losing the high gray-to-white matter contrast of T(2)-weighted sequences. In the quantitative analysis, the contrast ratios of the HIRE images were lower compared with the FLAIR images due to a relatively high background and CSF signal. After administration of contrast media, HIRE images presented a significant signal increase in enhancing lesions, which subsequently increased the contrast and contrast-to-noise ratios. In the qualitative analysis, both readers found all tumors clearly delineated on HIRE imaging. Compared with T(2)-weighted FSE, the tumor delineation with HIRE was better in nine patients, equal in four patients, and less in one patient. Compared with the FLAIR images, HIRE was rated superior in three patients, equal in nine patients, and inferior in another three patients. Delineation of the enhancing tumor parts was possible with HIRE in all patients. HIRE images had significantly fewer image artifacts than FLAIR images due to reduced inflow effects. The T(2)-based HIRE sequence presented is an alternative to the T(1)-based FLAIR sequence, with the advantage of better gray-to-white matter contrast and shorter measurement time. Due to the subtraction technique, signal intensities from tissues with relaxation times in the range T(2 WM) < < T(2) < T(2 CSF) are also gradually affected, corresponding to their T(2) values. With respect to this unwanted effect, an improvement in HIRE imaging will be possible by using a self-weighted subtraction algorithm. In a forthcoming study this concept will first be tested on appropriate phantom fluids.  相似文献   

15.
OBJECTIVE: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. MATERIALS AND METHODS: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. RESULTS: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P<0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P<0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P<0.05). CONCLUSION: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.  相似文献   

16.
PURPOSE: To compare qualitatively and quantitatively the contrast of brain lesions detected with fluid-attenuated inversion-recovery (FLAIR) and intermediate-weighted sequences at magnetic resonance (MR) imaging. MATERIALS AND METHODS: In this prospective study, 47 patients suspected of having a brain lesion underwent MR imaging with FLAIR, intermediate-weighted, and T2-weighted sequences. Qualitative assessment was performed of lesion conspicuity, detection, overall image artifact, and additional clinical information. Contrast and contrast-to-noise ratio (CNR) were calculated between lesions and the normal brain or cerebrospinal fluid (CSF). RESULTS: FLAIR images were equal to intermediate-weighted images for overall lesion conspicuity and detection but were associated more often with image artifacts. Lesion-to-background contrast was significantly higher on FLAIR than on intermediate-weighted images. FLAIR images failed to demonstrate multiple sclerosis (MS) plaques located in the basal ganglia and brain stem. CONCLUSION: Although FLAIR images provided additional information in some cases, they did not have distinct advantages over intermediate-weighted images. When cases of MS are evaluated, intermediate-weighted images are preferable to FLAIR images. Except in cases of MS, either FLAIR or intermediate-weighted sequences should be added to T2-weighted sequences at MR imaging.  相似文献   

17.
PURPOSE: The usefulness of fluid-attenuated inversion recovery (FLAIR) imaging for the evaluation of brain diseases has been reported. The purpose of this study was to evaluate the brain-meningioma interface with MRI including FLAIR imaging. MATERIALS AND METHODS: This study involved 48 patients with 50 intracranial meningiomas. We retrospectively evaluated the brain-meningioma interface by various imaging method including FLAIR. If a thin layer with a signal intensity different from that of the tumor and brain was observed in the areas of the tumor-brain interface in T(1)-weighted IR (T(1)WIR) and T(2)-weighted turbo SE (T(2)WTSE) images, we defined this structure as the rim. The presence or absence of the rim and the signal intensity were evaluated, and the length and the signal intensity of the rim observed with FLAIR and contrast-enhanced T(1)WIR (CE-T(1)WIR) images were evaluated. RESULTS: In 35 of the 50 lesions (70.0%), the rim was observed in the tumor-brain interface as a layer of low signal intensity in T(1)WIR images and high signal intensity in T(2)WTSE images. In 13 lesions (26.0%), no rim was detected. Flow voids were observed at the tumor-brain interface in 20 of the 50 lesions (40.0%). No rim showed a low signal intensity of the tumor-brain interface in both T(1)WIR and T(2)WTSE images. The rim exhibited an iso-to-high signal intensity compared to the tumor parenchyma in FLAIR images and an enhanced signal intensity in CE-T(1)WIR images. In contrast to T(1)WIR images, the rim in FLAIR images tended to be identified across the entire circumference. CONCLUSION: The rim at the brain-meningioma interface revealed as low signal intensity in T(1)WIR images and high signal intensity in T(2)WTSE images, which was conventionally considered to be the CSF cleft, was often revealed in FLAIR images as high signal intensity compared to the tumor parenchyma, and an enhanced signal intensity in CE-T(1)WIR images. Therefore, the presence of CSF in such rims is unlikely, and the rims might reflect the capsule structure of the tumor surface.  相似文献   

18.
Fluid-attenuated inversion recovery (FLAIR) sequence is currently used in clinical practice. Some reports emphasize the possibility that, in pathologic conditions, intravenous injection of gadolinium chelates may lead to an increased signal inside the cerebrospinal fluid (CSF). The aim of this study was to evaluate the presence of CSF signal changes in pathologic conditions causing blood-brain barrier disruption or neovascularization when imaging is performed after intravenous injection of gadolinium. We obtained FLAIR sequences after gadolinium injection from 33 patients affected by different intracranial pathologies and 10 control subjects. Patients were affected by ischemic stroke in the subacute phase, from 2 to 7 days from onset of symptoms (12 patients), meningiomas (8 patients), high-grade gliomas (5 patients), previous surgical procedures for intra-axial neoplasms (5 patients), and multiple sclerosis with active plaques (3 patients). Magnetic resonance imaging was performed in patients and controls using a 1.5-T magnet, using T2- and T1-weighted FLAIR sequences. The FLAIR sequence was acquired before and 1–3 h after injection of a standard dose of gadolinium. In those patients affected by ischemic lesions, FLAIR sequences were repeated the next days and 3–4 days later. The CSF signal was visually evaluated by two readers and scored from 0 to 3 depending by the degree of enhancement. The location of CSF signal changes (close to the lesion, hemispheric, or diffuse) was also considered. The CSF signal was markedly increased after 3 h from intravenous injection of gadolinium in all the patients with stroke, in those with previous surgery, and in those with high-grade gliomas whose neoplasm's surface was in contact with the subarachnoid spaces (SAS) or ventricles; a strong enhancement was also evident inside the necrotic component of the tumor. The CSF changes were more evident close to the pathology and/or in the hemisphere involved by the pathology. Moderate CSF enhancement was observed in the SAS close to meningiomas. No signal changes were evident in all the others. In those patients with stroke imaged in the following days, CSF signal showed to be diffuse to both hemispheres the next day and returned to normal values within 2 days. In patients affected by pathologies with blood-brain barrier breakdown or neovascularization close the SAS or the ventricles, CSF changes, related to gadolinium leakage, are likely when FLAIR sequences are acquired 2–24 h after i.v. injection of the contrast. This pattern should be known in order to differentiate it from that of subarachnoid hemorrhage. Electronic Publication  相似文献   

19.
快速FLAIR 序列在颅脑MRI 中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
探讨快速液体衰减反转恢复序列在脑部疾病中的应用价值。方法对39例脑部疾病患者同时行常规MRT2加权像及快速FLAIR检查,比较两种序列对病灶的显示情况。结果:FLAIR共检出病灶310个,常规T2加权像检出237个,FLAIR显示病灶的轮廓更为清晰,病灶与正常脑组织的对比度更高。  相似文献   

20.
液体衰减反转恢复序列在腹部及盆腔疾病应用价值的探讨   总被引:1,自引:0,他引:1  
目的:探讨液体衰减反转恢复(fluid—attenuated inversion recovery,FLAIR)序列与其他序列搭配在腹部疾患应用的临床价值,并初步评价其适用范围。方法:对90例患者共226个病灶进行定性,按常规扫描方法加上FLAIR序列进行检查,之后根据需要按照下列步骤进行扫描:①行质子像(PDW);②多回波成像;③仅有46例患者行静脉注射Gd-DTPA增强扫描。结果:所有病灶应用FLAIR后T2W均有变化;85例为降低,仅5例升高,经FLAIR后病灶依信号强度分为高、等、低3种。分别为23个(10.2%);65个(28.8%);138个(61.1%)。有175个病灶FLAIR明确诊断.占77.4%.22个行质子像,多回波成像定性。46例经增强扫描确定性质。低信号病灶均为囊性病变或液体,等信号病灶均为良性病变,增强前后应用FLAIR测量的T2值具有统计学意义。结论:在结果判定上以低信号组病例最具有诊断意义。等信号组均为良性病变。高信号组解释较为复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号