首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
利用HIPIMS与DCMS共沉积技术制备AlCrTiN复合硬质涂层,通过调控Al Cr靶脉冲峰值电流来制备不同峰值电流下的AlCrTiN涂层。采用XRD、SEM等分析手段表征不同峰值电流下AlCrTiN涂层的组织结构及微观形貌;通过纳米压痕、真空退火、高温摩擦磨损试验分析涂层的力学性能、热稳定性能及摩擦学性能。结果表明:AlCrTiN涂层为典型的面心立方结构,随峰值电流的增加,(111)及(200)晶面呈现竞争生长的状态;随真空退火温度上升,各涂层硬度值出现明显下降。1 000℃退火后,各涂层硬度维持在17 GPa附近;随摩擦环境温度的上升,各涂层摩擦因数整体呈下降趋势;280 A所制备涂层因高温抗氧化性能及磨屑排出能力的不足导致其高温磨损率迅速增加,800℃下其磨损的主要形式为氧化磨损和粘着磨损。  相似文献   

2.
目的 探究Ce-Ti合金靶功率对MoS2基涂层摩擦学性能的影响,制备干摩擦性能优异的MoS2基复合涂层。方法 采用直流与射频双靶非平衡共溅射技术,通过调节Ce-Ti(1∶1)靶功率控制涂层掺杂元素含量。利用原子力显微镜(AFM)、X射线光电子能谱仪(XPS)等多种测试手段,分析合金靶功率对Ce-Ti/MoS2涂层微观组织、力学性能及摩擦学性能的影响。结果 随着掺杂金属功率提升,MoS2基涂层由明显的晶体结构变为类似非晶结构;表面由纯MoS2的蠕虫状逐渐转化为细小团聚形貌,在达到90 W功率后团聚尺寸又逐渐粗大。当Ce-Ti靶(Ce的原子数分数为2.32%;Ti的原子数分数为7.21%)沉积功率达到70 W时,致密程度显著提高,由无掺杂多孔柱状晶变为细密柱状生长结构,纳米硬度达7.85 GPa,并明显改善了氧化现象。在摩擦磨损方面,70 W功率下磨痕呈微量的磨粒磨损,平均摩擦因数低至0.073,磨损率减少至9.42× 10–8 mm3 N–1m–1。对偶钢球形成转移膜,有效减少摩擦过程剪切力。70 W条件下转移膜面积最小,且摩擦时磨痕处重组生成MoS2结构,显著减少材料的摩擦因数与磨损率。结论 磁控溅射Ce-Ti掺杂MoS2基涂层提升了涂层致密程度与摩擦磨损性能,在功率达到70 W时达到最优综合性能,涂层的摩擦因数与磨损率也因形成高质量转移膜而显著降低。  相似文献   

3.
为进一步改善氮化钛涂层的摩擦学性能,分别采用高剂量Mo离子注入和低温离子渗硫技术对Ti N涂层表面进行处理。采用扫描电子显微镜(SEM)、光学形貌仪、扫描俄歇系统(SAM)、X射线衍射仪(XRD)和纳米压痕仪等分析Ti N涂层处理前后的表面形貌、元素分布、微观结构和纳米硬度。利用球盘摩擦磨损试验机在干摩擦条件下考察涂层的摩擦学性能,并利用光学形貌仪和SEM进行磨损表面分析。结果表明,大剂量Mo离子注入后,Ti N涂层表面Mo离子深度接近200 nm,涂层硬度明显降低,涂层磨损剧烈程度得到显著改善,磨损率和摩擦因数分别降低约35%和40%;低温离子渗硫复合处理后,Ti N涂层表面溅射明显,Mo的深度降低约50%,摩擦学性能难以进一步明显改善。  相似文献   

4.
采用非平衡磁控溅射与多弧离子镀技术分别在SDC90模具钢表面制备Cr Ti Al N与Ti Al N涂层,采用SEM、XRD及M200等观察与测定涂层的微观形貌与组织、承载能力及摩擦磨损性能。研究表明:Cr Ti Al N涂层致密、无柱状晶,Al Ti N涂层存在黑色颗粒,有轻微的柱状晶,粗糙度和厚度略高于前者;涂层显著提高了模具钢的表面硬度(1 887~2 482 HV_(0.245N))及承载能力,其中Cr Ti Al N涂层韧性优于Al Ti N涂层;强、韧表面有效降低模具钢的磨损体积与磨损率,磨损18 h后Cr Ti Al N与Al Ti N涂层的磨损体积分别为基体的48%和28%,磨损率分别为基体的60%和28%;高硬度的Al Ti N涂层显示出更好的耐磨性能;磨损机制主要为疲劳磨损。  相似文献   

5.
利用激光熔覆技术在纯钛表面制备了NiCr涂层。用X射线衍射仪(XRD)和扫描电镜(SEM)分析了涂层的组成和组织结构。在UMT-2MT摩擦磨损试验机上对NiCr涂层在不同载荷和不同滑动速度下的摩擦磨损性能进行了测试。结果表明:NiCr涂层的主要组成物相为NiTi、Ni3Ti、Ni4Ti3、Cr2Ni3和Cr2Ti,涂层与基材冶金结合,涂层晶体结构主要为树枝状晶,涂层的平均显微硬度约为780HV0.2,涂层的摩擦因数随载荷和滑动速度的增加而减小;磨损率随载荷的增加而增加,随滑动速度的增加而减小。涂层的磨损率在10-6 mm3/Nm数量级,具有优异的耐磨性能。  相似文献   

6.
利用激光表面合金化技术以铜粉为初始原料,在纯钛表面通过激光表面合金化原位反应成功制备了Ti-Cu纳米晶金属间化合物涂层。采用X-射线衍射仪(XRD)和高分辨透射电镜(HRTEM)分析了涂层的组成和组织结构,测试了涂层在不同载荷下的摩擦磨损性能。结果表明:通过激光表面合金化制备的涂层主要成分为Ti和金属间化合物TiCu、TiCu3、Ti3Cu相。涂层含有纳米晶Ti-Cu金属间化合物,晶粒尺寸为10~500nm。Ti-Cu金属间化合物涂层的摩擦因数随载荷增加而减小,体积磨损率在10-6~10-5 mm3/Nm数量级范围并随载荷的增加而增大,与纯钛底材相比,Ti-Cu金属间化合物涂层具有良好的耐磨性。  相似文献   

7.
纳米颗粒增强NiCoCrAlY熔覆涂层的高温摩擦磨损行为   总被引:2,自引:0,他引:2  
采用激光熔覆技术,在镍基高温合金表面制备相同含量的3种不同纳米颗粒增强的NiCoCrAlY涂层,考察它们在500℃空气氛围下的干摩擦磨损行为,并与未加纳米颗粒的涂层进行比较。结果表明:纳米颗粒增强涂层的高温摩擦磨损机制与未加纳米颗粒的涂层一致,均为强烈塑性变形引起的剥层磨损和氧化磨损;加入纳米颗粒后,涂层的摩擦因数增大且随滑行距离的增加呈减小趋势,涂层的磨损率仅为未加纳米颗粒涂层的34.0%~64.5%。在3种纳米颗粒中,纳米SiC颗粒对涂层高温耐磨性的改善最为显著。  相似文献   

8.
为提高304不锈钢耐磨损性能,采用磁过滤阴极弧等离子体沉积的方法制备TiAlSiN多层梯度涂层,研究多层梯度结构对涂层摩擦磨损性能的影响。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、纳米压痕仪和划痕仪等方法对涂层的表面形貌、物相结构以及力学性能进行表征,并通过MST-3001摩擦磨损试验仪测试不同结构涂层的摩擦磨损性能。结果表明:与TiAlSiN单层涂层相比,TiAlSiN多层梯度涂层具有更高的结合力和韧性;两种涂层的摩擦因数和磨损率都远小于304不锈钢,其中TiAlSiN多层梯度涂层具有比单层涂层更低的磨损率,磨损率由2.6×104μm3/(N·m)降至8.5×103μm3/(N·m),降低了67.8%,TiAlSiN多层梯度涂层磨痕表面光滑致密,主要磨损机制为轻微粘着磨损、磨粒磨损和氧化磨损的协同作用。  相似文献   

9.
目的对比研究海水环境下Ti N及Ti Si N涂层与Al2O3对磨的摩擦磨损行为。方法采用多弧离子镀技术在316L不锈钢及单晶硅片上制备Ti N及Ti Si N涂层。利用场发射扫描电子显微镜(SEM)、X射线衍射仪(XRD)及X射线光电子能谱仪(XPS)分析了涂层的截面形貌及化学组织成分。选择纳米压痕仪测量了Ti N及Ti Si N涂层的硬度及弹性模量,使用UMT-3往复式摩擦试验机研究了人工模拟海水环境下Al2O3与Ti N及Ti Si N涂层对磨后的摩擦磨损行为,并采用扫描电镜(SEM)、电子能谱(EDS)及表面轮廓仪来深入分析了磨痕的摩擦磨损情况。结果研究表明,Ti N涂层的硬度为32.5 GPa,当Si元素掺入涂层以后,Ti Si N涂层的硬度提高到了37 GPa。同时,较之于Ti N涂层,Ti Si N涂层的腐蚀电流密度下降了一个数量级。在摩擦实验中,Ti N涂层的摩擦系数和磨损率分别为0.35和5.21×10-6 mm3/(N·m),而Ti Si N涂层的摩擦系数和磨损率均有明显下降,分别为0.24和1.96×10-6 mm3/(N·m)。结论 Si元素掺杂后能显著提高Ti N涂层在海水环境下的摩擦学性能,主要归因于结构的致密,硬度、韧性、抗腐蚀性的提高及润滑相的形成。  相似文献   

10.
谷佳宾  李建勇  李刘合  金杰  张海鹏 《表面技术》2023,52(9):160-169, 188
目的 沉积条件对Ti N涂层的组织结构和力学性能有着至关重要的影响,而溅射技术又决定了涂层的沉积条件,探究不同溅射技术对Ti N涂层的微观组织结构和性能的影响,提高Ti N涂层的力学性能和高温摩擦磨损性能。方法 采用不同的溅射技术(dcMS、Hi PMS、Hybrid)在M2高速钢表面沉积Ti N涂层,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、sin2ψ法、纳米压痕仪、洛氏压痕法、划痕法和CSM球盘式摩擦试验机分别测试了Ti N涂层的组织结构特征、沉积速率、残余应力、纳米硬度、膜基结合力和高温摩擦磨损性能。结果 不同溅射技术制备的Ti N涂层均为柱状晶结构和Ti N (111)择优取向。HiPIMS-TiN涂层具有最高的纳米硬度(29.7GPa)和最低的膜基结合力(HF2),而Hybrid-TiN涂层呈现出最小的残余应力、高沉积速率和高膜基结合力,其膜基结合力达到HF1级,临界载荷(Lc2)达到82.5 N。不同溅射技术制备的Ti N涂层的摩擦因数均随着温度的升高而降低,在500℃时,Ti N涂层的摩擦因数约为0.53。Ti N涂层的磨损率随着温度的升...  相似文献   

11.
采用等离子体增强磁控溅射(PEMS)方法分别在硬质合金和硅片上制备了TiSiCN,TiSiCON,TiCrSiCN,TiCrSiCON,CrSiCN和CrSiCON涂层。采用XRD、SEM、EDS、显微硬度计及销盘式摩擦磨损试验机对含氧涂层和不含氧涂层的微观结构、成分和力学性能进行了研究。结果表明,TiSiCON,TiCrSiCON和CrSiCON含氧涂层为TiN型(或CrN型)面心立方(fcc)结构,但是TiSiCON,TiCrSiCON和CrSiCON涂层中氧的存在会导致产生疏松结构,与不含氧涂层TiSiCN,TiCrSiCN和CrSiCN相比具有更多的缺陷;氧的加入会导致Ti(Cr)SiCN涂层硬度和弹性的下降;TiCrSiCON和CrSiCON2种含氧涂层相对于不含氧涂层TiCrSiCN和CrSiCN具有更低的摩擦系数和磨损率;然而,TiSiCON相对于TiSiCN却表现出更高的摩擦系数和磨损率。  相似文献   

12.
利用纳米结构和常规喂料用大气等离子喷涂方法制备了Al2O3/TiO2涂层,研究了水环境中两种涂层与不锈钢对磨时的摩擦磨损性能.结果表明:水环境中,两种涂层摩擦因数变化不大,但是纳米喂料涂层耐磨性能明显优于常规涂层,同时其对偶的磨损率仅为常规涂层对偶磨损率的1/3~1/5,磨损率随载荷的增加不断增加.讨论了水环境中两种涂层的磨损机制.  相似文献   

13.
滕叶平  曹均  黄海波  崔烺  姚松龙  文静波 《表面技术》2022,51(9):102-112, 159
目的 提高发动机铝合金轴瓦在温升的油润滑甚至干摩擦工况下的摩擦磨损性能。方法 设计4种不同添加量的ZrO2填充PI/EP–PTFE涂层材料,采用液体喷涂工艺在A370铝合金基体表面制备涂层。通过摩擦磨损试验、纳米压痕试验、形貌特征及元素分布等测试试验,研究涂层在不同温度及不同润滑方式下的摩擦磨损性能。结果 涂层的硬度随ZrO2添加量的增加呈先增后减的趋势。在室温干摩擦工况下,涂层磨损率随ZrO2添加量的增加呈先减后增的趋势。当ZrO2添加量超过8%时,涂层进入动态平衡阶段的时间变长。4%ZrO2添加量的涂层性能最佳,室温干摩擦因数和磨损率分别为0.09和1.01×10?6mm3/(N.m)。随着温度增加,摩擦因数呈先增后减的趋势,磨损率呈逐渐上升趋势。当ZrO2质量分数小于4%时,室温工况下涂层以黏着磨损为主;当添加量高于8%时,磨损机制以磨粒磨损为主。随着温度增加,涂层犁沟和磨损坑道更加明显。在油润滑工况下,摩擦因数和磨损量进一步减小。8 h油润滑和30 min干摩擦试验后,涂层出现磨痕深度高度相近,宽度不同现象。结论 在温升和不同摩擦接触状态下,涂层中高分子材料和ZrO2软化程度不均匀、大颗粒材料团聚、润滑油黏温特性是导致上述摩擦磨损变化的主要原因。  相似文献   

14.
采用等离子体增强磁控溅射(PEMS)方法分别在硬质合金和硅片上制备了TiSiCN, TiSiCON, TiCrSiCN, TiCrSiCON, CrSiCN 和 CrSiCON涂层。采用XRD、SEM、EDS、显微硬度计及销盘式摩擦磨损试验机对含氧涂层和不含氧涂层的微观结构、成分和机械性能进行了研究。研究结果表明,TiSiCON, TiCrSiCON和 CrSiCON含氧涂层为TiN型(或CrN型)面心立方(fcc)结构,但是TiSiCON, TiCrSiCON, 和 CrSiCON涂层中氧的存在会导致产生疏松的结构以及相比于不含氧涂层TiSiCN, TiCrSiCN和CrSiCN更多的缺陷;氧的加入会导致Ti(Cr)SiCN涂层硬度和弹性的下降;TiCrSiCON和 CrSiCON两种含氧涂层相比于不含氧涂层TiCrSiCN和CrSiCN有更低的摩擦系数和磨损率;然而,TiSiCON相比于TiSiCN却表现出更高的摩擦系数和磨损率。  相似文献   

15.
目的研究AlSiFeMm(Mm为镍包混合稀土)非晶纳米晶涂层在干摩擦和3.5%NaCl溶液中的摩擦磨损行为。方法采用Rtec(MFT-3000)往复式磨损试验机测试涂层在干摩擦条件和有腐蚀介质条件下的摩擦磨损性能,使用LEXTOL3000-IR非接触三维表面轮廓仪测定涂层的磨损体积和磨痕的三维形貌,利用扫描电子显微镜对磨痕进行形貌观察和成分分析。结果铝基非晶纳米晶涂层的摩擦系数随着载荷的增加而不断减小。干摩擦条件下,铝基非晶纳米晶涂层的磨损率随着载荷的增加而增大,当磨损速度为10 mm/s、载荷为15 N时,涂层相对耐磨性为6061铝合金的2.5倍,其磨损机制为脆性剥落、磨粒磨损,并伴随氧化磨损。在3.5%NaCl溶液中,涂层的磨损率随着载荷的增加而逐渐降低,当磨损速度为35 mm/s、载荷为30N时,涂层的耐磨性能约为6061铝合金的8倍,其失效机制主要为剥层磨损和腐蚀磨损。结论铝基非晶纳米晶复合涂层在干摩擦和腐蚀介质中均表现出较为优异的耐磨性能,可以作为轻质合金涂层应用于表面防护领域。  相似文献   

16.
为了研究Ti C对激光熔覆涂层结构与性能的影响,运用激光熔覆技术在Ti Al合金表面制备Ti-Al-Ti C涂层,采用扫描电镜(SEM)、能谱仪(EDS)、XRD、显微硬度计、摩擦磨损试验机对所制备涂层的显微组织、物相及成分、显微硬度和摩擦磨损性能等进行了测试。结果表明:在含有20%微米级Ti C的激光熔覆层(A涂层)内,增强相Ti C生长较为发达,整体呈树枝状形态,枝晶生长方向较为杂乱,熔覆质量较差;而在含有10%纳米级Ti C的激光熔覆层(B涂层)内,增强相Ti C的形貌为颗粒状和长条状,在熔覆层内分布较均匀,生长方向较规律;在含有20%纳米级Ti C的激光熔覆层(C涂层)内,增强相Ti C的形貌主要为颗粒状和细杆状,熔覆层内组织生长发达,致密,熔覆质量较好。添加纳米级Ti C的涂层在显微硬度和耐磨性上优于添加微米级Ti C的涂层,涂层中纳米Ti C含量由10%上升到20%时,涂层显微硬度和耐磨性均有明显提高。  相似文献   

17.
采用磁控溅射仪制备了一系列不同C含量的Ti WCN复合膜.利用XRD,SEM,纳米压痕仪和高温摩擦磨损仪等对Ti WCN复合膜的微结构、力学性能和摩擦磨损性能进行了表征.结果表明:Ti WCN复合膜由fcc结构的Ti WCN相和六方结构的Ti2N相组成;随着C含量增加,薄膜硬度先升高后降低,室温摩擦系数逐渐减小,而磨损率先减小后增大.当C含量为11.25%时,硬度达到最大值,为35.97 GPa;磨损率获得最小值,为1.26×10-5mm3·N-1·m-1.当C含量为13.68%时,摩擦系数最小,为0.32.当温度低于370℃时,Ti WCN复合膜的摩擦系数和磨损率小于Ti WN薄膜;当温度超过370℃时,Ti WCN复合膜的摩擦系数和磨损率大于Ti WN薄膜.C添加到Ti WN薄膜中提高了薄膜的力学性能和常温摩擦磨损性能,而薄膜的高温摩擦磨损性能并未得到改善.  相似文献   

18.
目的 为缓解动力系统金属表面发生的空泡失效问题,提高水下装备推进系统在复杂多变环境中的综合服役性能,将涂层技术用于金属材料的表面防护。方法 基于正交实验设计,采用非平衡磁控溅射技术在AISI 316不锈钢基体上制备CrTiAlN涂层。采用XRD、SEM、EDS和AFM等测试手段对涂层的物相、形貌、成分和表面粗糙度进行表征;采用维氏硬度计、划痕仪和洛氏硬度计对涂层的显微硬度和膜基结合力进行测试与评估;通过球–盘磨损实验、电化学测试和空蚀实验,分别评价涂层的耐干摩擦磨损、耐腐蚀和抗空蚀性能。结果 实验结果表明,利用正交试验设计调控Cr、Ti和Al靶电流,基于涂层硬度得到最佳靶电流分别为4、8、8 A,此时涂层显微硬度达到1 242HV0.01,纳米硬度为(17.00±0.99) GPa,远高于316不锈钢;涂层的摩擦因数和磨损率远低于316不锈钢;在质量分数为3.5%的NaCl溶液中,涂层的腐蚀电位较高,腐蚀电流较小,具有较好的耐腐蚀性能,采用涂层保护后316不锈钢的寿命得到显著提高;在空蚀实验后,316不锈钢的粗糙度从4.5 nm增至112.0 nm,并出现空蚀坑,而CrTiAlN涂层只出现了褶皱,其粗糙度从4.8 nm增至10.0 nm,仅在涂层缺陷处发生了零星剥落现象。可见,CrTiAlN涂层有效缓解了空蚀的冲击作用,提高了316不锈钢的抗空蚀性能。结论 可将CrTiAlN涂层作为防护涂层,并应用于水利工程装备关键部件。  相似文献   

19.
王跃明  李晨龙  韩旭航  黄杰  朱建勇  解路  刘秀波 《表面技术》2023,52(10):160-170, 180
目的 研究环境温度对FeCoCrNiAl高熵合金涂层摩擦磨损性能的影响,探讨将其应用于高温及富氧环境中的可行性。方法 采用大气等离子喷涂制备FeCoCrNiAl高熵合金涂层,考察喷涂功率对涂层微观组织的影响;测试涂层的纳米力学性能,分析其对涂层摩擦磨损性能的影响;基于涂层及对偶磨球磨损表面形貌、元素分布及含量、物相组成,讨论涂层在室温及高温环境中的摩擦磨损特性与机制。结果 涂层中形成了白色、浅灰色、深灰色及黑色4种区域,区域颜色随O元素含量增加而加深,涂层纳米力学性能逐渐增加,进而将对其摩擦磨损性能造成影响。20 kW喷涂功率制备涂层的室温摩擦因数、磨损率及磨痕深度均达最佳值,分别为(0.70±0.02)、(9.22±0.01)×10-5 mm3/(N·m)及(130±10)μm。室温环境下,磨粒磨损、疲劳磨损及塑性变形为涂层的主要磨损机制。20 kW功率制备涂层的摩擦因数、磨损率、磨痕深度等均随摩擦环境温度的升高先增加而后降低,经600℃摩擦试验后分别低至(0.58±0.01)、(6.14±0.01)×10-5 mm<...  相似文献   

20.
采用化学气相沉积(CVD)技术在硬质合金表面沉积TiN/MT-TiCN/Al2O3/ZrCN多层涂层,并对其进行微喷砂处理.采用扫描电镜(SEM)表征涂层的组织结构,利用显微硬度计、纳米压痕仪、划痕测试仪和往复式摩擦磨损实验机(UMT-3)测试涂层的硬度、结合强度和摩擦磨损性能,并与TiN/MT-TiCN/Al2O3/TiOCN涂层进行比较.结果 表明:TiN/MT-TiCN/Al2O3/ZrCN涂层的磨损机理主要包括磨粒磨损、粘着磨损、氧化磨损和疲劳磨损.相比于摩擦1h,TiN/MT-TiCN/Al2O3/ZrCN涂层摩擦2h,剥落增多,且磨粒磨损、粘着磨损和疲劳磨损加剧,磨损率增加了33.3%;摩擦3h,涂层磨粒磨损、粘着磨损和疲劳磨损进一步加剧,但剥落减轻,磨损率较摩擦2h略有降低.摩擦1h,TiN/MT-TiCN/Al2O3/ZrCN涂层的摩擦系数(0.33)比TiN/MT-TiCN/Al2O3/TiOCN涂层(0.39)低;尽管TiN/MT-TiCN/Al2O3/ZrCN涂层韧性好,疲劳磨损较轻,但磨粒磨损严重,且存在明显剥落,磨损率高,耐磨性较差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号