共查询到19条相似文献,搜索用时 62 毫秒
2.
3.
中文比较句识别及比较关系抽取 总被引:1,自引:0,他引:1
比较是一种具有一定说服力的评估方式,利用机器进行比较句的识别以及比较关系的抽取可以对观点挖掘、信息推荐等应用提供重要的依据。该文通过构建中文比较模式库以实现中文比较句的自动识别。在此基础上,该文通过选取比较主体、比较客体及其上下文的词、词性、位置、语义以及比较属性的领域知识等特征,利用条件随机域模型进行中文比较关系抽取。实验结果表明,中文比较模式库的构建有助于比较句的自动识别,而在词、词性、位置等Baseline特征中融入语义、领域知识及启发式规则特征后,基于条件随机域的比较关系抽取结果有了显著的提高。 相似文献
4.
汉语比较句识别研究 总被引:2,自引:0,他引:2
比较是常见的表达方式,提取事物之间的比较关系是一项新颖而有实用价值的研究。识别自然语言中的比较句,是提取比较关系的一个重要步骤。目前还没有针对汉语比较句的自动识别研究,语言学上比较句的哪些特征能够应用到自动识别上来是一个亟待研究的问题。该文讨论了汉语比较句的范畴、外延和特征,定义了汉语比较句识别的任务,并提出用SVM分类器将汉语句子分为“比较”和“非比较”两类。该文比较了比较句的语言学特征和统计特征,包括特征词、序列模式等在分类中的作用。实验结果表明:基于类序列规则的SVM分类器能够有效地识别汉语比较句,效果优于传统基于词的文本分类。 相似文献
5.
比较是人们常用的评估不同事物优劣、异同的表达方式,利用机器识别比较句并进一步抽取比较要素是语言信息处理领域一项新颖又有实用价值的课题。该文依据比较句与比较要素之间是一种“你中有我,我中有你”的共生关系,将比较句识别与比较要素抽取两个任务合二为一完成;根据词意分类,构建由领域词典、情感词典、标记词典、普通词典构成的词典系统;根据汉语比较句句义分类,构建比较句识别与比较要素抽取规则库。以第四届中文倾向性评测(COAE2012)发布的测试语料为实验对象,该系统取得了较好的实验(评测)结果。 相似文献
6.
句际关系自动分析属于篇章语义学研究的范畴,虽然英语句际关系的研究已有大量工作,但汉语句际关系的自动分析还只是刚刚起步。该文在RST理论框架下,结合汉语特点,提出了完整的汉语篇章级小句关系标注体系。将汉语话题和逻辑关系置于同一个框架下进行描述,将小句关系划分为事件附属关系和事件逻辑关系两大类。逻辑关系又包括6个中类、15个小类。目前已在人民日报语料上完成了8000个句子的小句关系标注。抽取出其中1000个句子检测了双盲标注的一致性,揭示了汉语意合性语言小句关系标注的困难;并基于标注数据对关系类型进行了定量分析,指示了汉语句际关系自动分析将面临的重点和难点。 相似文献
7.
藏文地名识别是藏文命名实体识别中必须要解决的问题。通过分析藏文地名的特点及识别难点,阐述了藏文地名的音节、触发词、地名后续词和格助词等特性适用基于CRF模型的地名识别,通过实验,验证了6种特征对藏文地名识别的有效性。实验结果表明该方法对藏文地名识别的准确率、召回率和[F]值分别达到了96.12%、81.92%和88.45%,实验结果与已有的系统相比,取得了较好的效果。 相似文献
8.
评价对象是指某段评论中评价词语所修饰的对象或对象的属性。为了识别评论中的评价对象,提出基于Co-training的训练CRF模型方法。该方法首先人工标注少量的原始数据集,使用Co-training方式对未标注数据进行自动识别,以扩大已标注训练数据。通过原始标注数据集和Co-training方式标注数据集,训练CRF模型。在汽车领域中,对待标注汽车评论语料中评价对象识别的精确率为67.483%,召回率为67.832%。 相似文献
9.
针对现有的句向量学习方法不能很好的学习关系知识信息、表示复杂的语义关系,提出了基于PV-DM模型和关系信息模型的关系信息句向量模型(RISV),该模型是将PV-DM模型作为句向量训练基本模型,然后为其添加关系信息知识约束条件,使改进后模型能够学习到文本中词语之间的关系,并将关系约束模型(RCM)模型作为预训练模型,使其进一步整合语义关系约束信息,最后在文档分类和短文本语义相似度两个任务中验证了RISV模型的有效性。实验结果表明,采用RISV模型学习的句向量能够更好地表示文本。 相似文献
10.
11.
中文比较句研究多集中于语言学领域,然而利用机器学习的方法识别比较句的研究才刚刚起步。根据关联规则挖掘算法的基本原理提出一种基于关联特征词表的比较句识别方法,该方法将词和词性作为一个基本元素,定义特征词表中核心词和依存词之间的关联方式,利用支持向量机(SVM)分类器进行比较句的识别。实验结果表明,该方法能够有效地识别出中文比较句,在准确率、召回率和F值上均取得不错的效果。 相似文献
12.
13.
14.
句子相似度的计算在自然语言处理的各个领域占有很重要的地位,一些传统的计算方法只考虑句子的词形、句长、词序等表面信息,并没有考虑句子更深层次的语义信息,另一些考虑句子语义的方法在实用性上的表现不太理想。在空间向量模型的基础上提出了一种同时考虑句子结构和语义信息的关系向量模型,这种模型考虑了组成句子的关键词之间的搭配关系和关键词的同义信息,这些信息反应了句子的局部结构成分以及各局部之间的关联关系,因此更能体现句子的结构和语义信息。以关系向量模型为核心,提出了基于关系向量模型的句子相似度计算方法。同时将该算法应用到网络热点新闻自动摘要生成算法中,排除文摘中意思相近的句子从而避免文摘的冗余。实验结果表明,在考虑网络新闻中的句子相似度时,与考虑词序与语义的算法相比,关系向量模型算法不但提高了句子相似度计算的准确率,计算的时间复杂度也得到了降低。 相似文献
15.
16.
针对中文问题分类的中心词识别不准确的问题, 提出了一种基于条件随机场(CRF)和错误驱动学习相结合的识别方法。该方法采用CRF模型对问题的中心词进行初始标注, 依据词的上下文信息用错误驱动的学习方法对其标注结果进行纠正。在训练有序规则的过程中, 为了减少训练时间, 结合中心词的特点对错误驱动算法进行了改进。实验结果表明, 该方法在一定程度上提高了中心词的标注精度, 达到88%。 相似文献
17.
基于条件随机场模型在字粒度上识别并切分藏文人名,其优势是可以较好地利用藏文人名在文本中出现的基本特征和上下文特征来确定藏文人名在文本序列中的边界。根据藏文人名自身的特点设定特征标签集,利用条件随机场模型作为标注建模工具来进行训练和测试。从实验结果来看,该方法有较高的识别正确率,具有进一步研究的价值。下一步的改进需要扩充训练语料,并针对人名与一般词语同形现象进行特征标签集的优化。 相似文献
18.
关系词在现代汉语复句领域起着重要的作用,是汉语语法、语义研究中的重要内容,复句关系词的计算机自动识别是一个非常困难的研究课题。在汉语复句关系词自动识别中规则的约束条件研究的基础上,重点研究现代汉语复句关系词自动识别系统中规则的表示方法,为进一步研究、建设复句关系词自动识别中的规则库,深入研究规则与统计相结合自动识别复句和复句关系词的方法,为实现汉语句子和篇章的自动识别奠定基础。 相似文献
19.
地址抽取是信息采集研究的热点,但是如何保证高准确率与召回率一直是一个具有挑战性的问题.将基于CRF的方法与规则抽取方法相结合来进行地址抽取,并将优化后的结果再用来进行CRF训练;此过程不断循环迭代,直至性能不再提升,最后得到多个CRF分类器.这个不断迭代的过程就是基于群集智能的ACG算法流程,最后再通过组合多个分类器的结果形成最终结果.实验表明,该方法可以把召回率和准确率分别提高到96.44%和97.73%. 相似文献