首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-one ponies immunized with inactivated virus vaccine containing A/equine/Miami/63 (H3N8) virus and six seronegative ponies were experimentally challenged with the homologous virus strain. All 6 unvaccinated ponies and 11 out of 31 vaccinated ponies became infected. A clear relationship between pre-challenge antibody, measured by single radial haemolysis (SRH), and protection was demonstrated as judged by virus excretion, febrile responses and antibody responses. Those ponies with SRH antibody levels greater than 74 mm2 were completely protected against challenge infection by the intranasal route.  相似文献   

2.
Equine influenza vaccines containing inactivated whole virus and Carbomer adjuvant stimulated higher levels and longer lasting antibody to haemagglutinin in ponies than vaccines of equivalent antigenic content containing aluminium phosphate adjuvants. Five months after the third dose of vaccine containing Carbomer adjuvant, ponies were protected against clinical disease induced by an aerosol of virulent influenza virus (A/equine/Newmarket/79, H3N8). In contrast ponies which received vaccine containing aluminium phosphate adjuvant were susceptible to infection and disease. There was an inverse correlation between prechallenge levels of antibody detected by single radial haemolysis (SRH) and duration of virus excretion, pyrexia and coughing. All ponies with antibody levels equivalent to SRH zones of > or = 154 mm2 were protected against infection and all those with levels > or = 85 mm2 were protected from disease.  相似文献   

3.
Forty ponies immunized with inactivated virus vaccine containing A/equine/Miami/63 (H3N8) virus and six unvaccinated, seronegative ponies were experimentally challenged with a representative of recent equine H3N8 virus isolates, A/equine/Newmarket/79. All unvaccinated ponies became infected as judged by virus excretion, febrile responses and antibody responses, but only two of the vaccinated ponies were fully protected. Pre-challenge antibody levels to A/Newmarket/79 virus detected by single radial haemolysis (SRH) correlated well with the degree of clinical protection but the levels required for complete protection (SRH zones greater than 65 mm2) were high. The importance of these results in relation to conventional vaccination procedures against equine influenza is discussed.  相似文献   

4.
Forty ponies immunized with inactivated virus vaccine containing A/equine/Miami/63 (H3N8) virus and six unvaccinated, seronegative ponies were experimentally challenged with a representative of recent equine H3N8 virus isolates, A/equine/Newmarket/79. All unvaccinated ponies became infected as judged by virus excretion, febrile responses and antibody responses, but only two of the vaccinated ponies were fully protected. Pre-challenge antibody levels to A/Newmarket/79 virus detected by single radial haemolysis (SRH) correlated well with the degree of clinical protection but the levels required for complete protection (SRH zones greater than 65 mm2) were high. The importance of these results in relation to conventional vaccination procedures against equine influenza is discussed.  相似文献   

5.
《Vaccine》2015,33(9):1197-1205
Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80–95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection.  相似文献   

6.
《Vaccine》2018,36(41):6103-6110
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge.  相似文献   

7.
Equine influenza virus infection remains one of the most important infectious diseases of the horse, yet current vaccines offer only limited protection. The equine immune response to natural influenza virus infection results in long-term protective immunity, and is characterized by mucosal IgA and serum IgGa and IgGb antibody responses. DNA vaccination offers a radical alternative to conventional vaccines, with the potential to generate the same protective immune responses seen following viral infection. Antigen-specific antibody isotype responses in serum and mucosal secretions were studied in ponies following particle-mediated delivery of hemagglutinin (HA)-DNA vaccination on three occasions at approximately 63-day intervals. One group of four ponies were vaccinated at skin and mucosal sites and the another group were vaccinated at skin sites only. All ponies were subjected to a challenge infection 30 days after the third vaccination. Skin and mucosal vaccination provided complete protection from clinical signs of infection, while skin vaccination provided partial protection; DNA vaccination provided partial protection from viral shedding. DNA vaccination generated only IgGa and IgGb antibody responses, which occurred with a higher frequency in the skin and mucosa vaccinated ponies. No mucosal IgA response was generated prior to challenge infection and IgA responses were only detected in those ponies which shed virus postchallenge. These results demonstrate that HA-DNA vaccination induces IgG(a) and IgG(b) antibody responses which are associated with protection in the absence of mucosal IgA responses. In addition, additional DNA vaccinations of mucosal sites increased protection and the frequency of seroconversion in ponies.  相似文献   

8.
The poultry populations of Egypt are endemically infected by highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1. Vaccination was chosen as an auxiliary tool to control HPAIV in poultry. Potency of commercial vaccines regarding emerging variants is under discussion. In the current study efficacy of four different inactivated whole H5 virus vaccines representing different sublineages of HPAIV H5N1 were tested in chickens against challenge viruses currently co-circulating in Egypt and representing two antigenically widely distinct HPAIV H5N1 lineages, i.e., “variant” (clade 2.2.1var) and “proper” (clade 2.2.1pro) viruses. All vaccines induced clinical protection against challenge with 2.2.1pro Egyptian strains. In contrast, when challenged with a variant strain, only chickens vaccinated with the homologous Egyptian clade 2.2.1var virus or an inactivated re-assorted H5N1 strain (Re-5, clade 2.3) were protected. However, only the homologous virus induced sterile immunity whereas chickens clinically protected after Re-5 vaccination shed virus at day two after infection indistinguishable to H5N2 vaccines. In conclusion, monitoring vaccine-driven evolution of HPAIV H5N1 by surveillance, antigenic characterization, and challenge studies is essential to assess efficacy of AIV vaccination campaigns.  相似文献   

9.
Wesley RD  Tang M  Lager KM 《Vaccine》2004,22(25-26):3427-3434
Swine influenza virus (SIV), subtype H3N2, is a recent reassortant virus that emerged in 1998 in North American swine causing severe respiratory and reproductive disease. In this study, two replication-defective adenovirus recombinants were developed as potential vaccines against H3N2 influenza viruses. Three groups of 3-week-old pigs (10 pigs per group) were vaccinated intramuscularly (IM) with the recombinants; one group was vaccinated with the recombinant adenovirus expressing the influenza virus H3 hemagglutinin (HA) protein, one group was vaccinated with the recombinant adenovirus expressing the nucleoprotein (NP), and one group was vaccinated with both recombinants in a mixture. Two additional control groups (10 pigs per group) were included in the animal trial. One control group was challenged with a virulent H3N2 field strain and one control group remained unchallenged. The results showed that pigs in the groups given the recombinant adenovirus expressing HA alone and HA plus NP developed high levels of virus-specific hemagglutination-inhibition (HI) antibody by 4 weeks post vaccination. Pigs in the group vaccinated with both recombinant viruses in a mixture were completely protected. Complete protection was shown by the lack of nasal shedding of virus following challenge and by the lack of lung lesions at 1 week following the challenge infection. Thus, replication-incompetent adenovirus vaccines given simultaneously to pigs are efficacious for SIV and have the additional advantage over commercial vaccines that suckling piglets have no pre-existing maternally-derived antibody to block early life vaccination.  相似文献   

10.
Despite global efforts to control influenza viruses, they have taken a heavy toll on human public health worldwide. Among particular threats is highly pathogenic avian H5N1 influenza virus (HPAI) due to not only its high mortality in humans but also possible human-to-human transmission either through reassortment with other human influenza viruses such as 2009 pandemic H1N1 influenza virus, or by genetic mutations. With the aim of developing effective vaccines against the H5N1 viruses, we generated two live attenuated H5N1 vaccine candidates against A/Indonesia/05/2005 (clade 2.1) and A/chicken/Korea/ES/2003 (clade 2.5) strains, in the genetic background of the cold-adapted donor strain of X-31. In mice, a single dose of immunization with each of the two vaccines was highly immunogenic inducing high titers of serum viral-neutralizing and hemagglutinin-inhibiting antibodies against the homologous H5N1 strain. Furthermore, significant levels of cross-clade antibody responses were induced by the vaccines, suggesting a broad-spectrum cross-reactivity against the heterologous H5N1 strains. The immunizations provided solid protections against heterologous lethal challenges with H5N2 virus, significantly reducing the morbidity and challenge virus replications in the respiratory tracts. The robustness of the antibody responses against both the homologous and heterologous strains, together with efficient protection against the lethal H5N2 challenge, strongly support the protection against wild type H5N1 infections. These results could serve as an experimental basis for the development of safe and effective H5N1 pre-pandemic vaccines while further addressing the biosecurity concerns associated with H5N1 HPAI.  相似文献   

11.
Administration of influenza vaccines through the intranasal (IN) route forms an attractive alternative to conventional intramuscular (IM) injection. It is not only a better accepted form of vaccine administration but it also has the potential to induce, in addition to systemic antibodies, local protective antibodies, i.e. S-IgA. Most commercially available vaccines however are inactivated non-replicating vaccines and have a low immunogenicity when administered intranasally. Local administration of these vaccines would therefore need an adjuvant to boost systemic and local antibody responses. Here we explored the use of a safe adjuvant system, i.e. bacterium-like particles (BLPs) derived from the food-grade bacterium in Lactococcus lactis, in the induction of protective antibody responses after intranasal immunization of mice. Supplementation of H1N1 split vaccine with BLPs significantly increased levels of serum influenza-specific IgG and hemagglutination-inhibiting antibodies: this was dependent on the dose of admixed BLPs and number of immunizations. Admixing BLPs further boosted local influenza-specific S-IgA antibody levels at lung and nasal mucosal sites, but also at distant mucosal sites such as the vaginal mucosal tissue. Mice immunized IN with BLP-adjuvanted vaccine and IM with non-adjuvanted vaccine were protected against weight loss upon homologous infection with H1N1 A/PR/8/34. Full protection against weight loss upon heterologous challenge with H1N1 A/PR/8/34 was seen in mice immunized IN with BLP-adjuvanted H1N1 A/New Caledonia-derived split virus vaccine, but not in those receiving the split virus vaccine IM. Mice immunized IN with BLP-adjuvanted vaccine had significantly lower lung viral titers upon homologous and heterologous challenge when compared to titers detected in mice immunized by IM injection of non-adjuvanted vaccine. Thus, adjuvantation of IN-administered influenza vaccines with BLPs effectively enhances systemic and local antibody responses leading to a superior protection against homologous and heterologous influenza infection compared to conventional IM immunization.  相似文献   

12.
In this study, we evaluated the immunogenicity and protective efficacy of a candidate attenuated H5N1 pre-pandemic influenza vaccine of clade 2.3.4, rgAnhui, which was reverse genetically generated from highly virulent A/Anhui/01/2005 (H5N1) wild-type virus. When a low-dose antigen (0.3 μg HA) vaccine was combined with aluminum hydroxide adjuvant, virus neutralization and anti-HA IgG antibodies induced in the sera of vaccinated mice showed similar levels as those in mice vaccinated with non-adjuvanted high-dose antigen (3 μg HA) vaccine. Serum antibodies had broad reactivity against highly pathogenic H5N1 viruses of both homologous and heterologous clades. All mice vaccinated with adjuvanted and non-adjuvanted rgAnhui vaccines at low and high antigen doses survived, without any significant weight loss, lethal challenge infection with homologous clade 2.3.4 viruses, including antigenic variant virus and heterologous clade 2.1.3. Mice vaccinated with low-dose antigen without adjuvant, however, exhibited 20% and 60% survival rates against clade 1 and clade 2.2 viruses, respectively; but, addition of adjuvant improved these rates to 80% and 100%, respectively. The data strongly suggest that aluminum hydroxide-adjuvanted rgAnhui vaccine can elicit broad cross-reactive and protective immunities against homologous and heterologous clades, and that the rgAnhui vaccine is a useful pre-pandemic H5N1 vaccine.  相似文献   

13.
《Vaccine》2016,34(44):5235-5242
Avian-origin influenza represents a global public health concern. In 2013, the H10N8 virus caused documented human infections for the first time. Currently, there is no approved vaccine against H10 influenza. Recombinant virus-like particles (VLPs) represent a promising vaccine approach. In this study, we evaluated H10 VLPs containing hemagglutinin from H10N8 virus as an experimental vaccine in a ferret challenge model. In addition, we evaluated quadri-subtype VLPs co-localizing H5, H7, H9 and H10 subtypes. Both vaccines elicited serum antibody that reacted with the homologous H10 derived from H10N8 virus and cross-reacted with the heterologous H10N1 virus. Quadri-subtype vaccine also elicited serum antibody to the homologous H5, H7, and H9 antigens and cross-reacted with multiple clades of H5N1 virus. After heterologous challenge with the H10N1 virus, all vaccinated ferrets showed significantly reduced titers of replicating virus in the respiratory tract indicating protective effect of vaccination with either H10 VLPs or with quadri-subtype VLPs.  相似文献   

14.
Tick-borne encephalitis virus (TBEV) is a flavivirus of wide geographic distribution and the causative agent of tick-borne encephalitis (TBE), an infection of the central nervous system. TBE has the highest incidence rate in Russia, where locally produced as well as Western European vaccines for the prevention of TBE are available. The Western European vaccines are based on TBE viruses that belong to the European subtype, while the Russian vaccines are based on Far Eastern subtype viruses. The question of to which extent vaccination with a vaccine based on the European subtype is effective in protecting against the heterologous Far Eastern virus subtype - and vice versa - has not been answered conclusively. Here we immunized mice with TBE vaccines based on European and Far Eastern subtype viruses, and used an unbiased hybrid virus test system to determine cross-neutralizing antibody titers and cross-protective efficacy. All vaccines tested elicited cross-protective responses against the heterologous strains, similar to those induced against the respective homologous vaccine strains. These data, therefore, fully support the use of TBE vaccines in geographic regions where virus subtypes heterologous to the vaccine strains are prevalent.  相似文献   

15.
16.
Current vaccines for influenza are primarily killed whole virus vaccines that elicit antibody responses to the homologous virus but lack protection against heterologous viruses. Using chickens as a model we have explored the possibility of using a live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 virus as a vaccine to generate protective immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Pensylvania/1370/1983 H5N2 virus challenge. Virus replicated in chickens infected with LPAI H1N1 but did not cause clinical disease. In addition, these chickens developed neutralizing antibodies to LPAI H1N1 virus, but not HPAI H5N2, 21 days post infection (DPI). Furthermore, peripheral blood mononuclear cells from H1N1-infected chickens at 20 DPI had antigen specific proliferation and IFN-γ secretion following antigen stimulation to H5N2 indicating a heterologous HPAI H5N2 specific cell mediated immunity (CMI) following LPAI H1N1 infection. Following challenge with HPAI H5N2 virus, all control chickens developed clinical disease, while chickens previously infected with H1N1 did not develop clinical disease and shed significantly less virus by oral and cloacal routes. These results indicated that previous infection with LPAI virus can generate heterologous CMI capable of protecting against HPAI H5N2.  相似文献   

17.
To test whether inactivated influenza vaccines distributed during the 2003-2004 influenza season in the northern hemisphere were able to confer protection against the mismatched variant A/Fujian/411/2002 virus strain, we measured haemagglutination inhibiting (HI) antibodies in elderly subjects vaccinated with three inactivated vaccines against the homologous A/H3N2 vaccine strain (A/Panama) and against the mismatched A/Fujian strain. The results showed that, while 76 to 80% of elder people vaccinated with conventional vaccines had protected levels of antibodies against the A/Fujian heterovariant strain, those vaccinated with the MF59-adjuvanted vaccine have protective levels of antibodies in >98% of the cases. We conclude that MF59-adjuvanted vaccines confer protection also against influenza virus strains which are not fully matched with those included in the vaccine.  相似文献   

18.
Adamantylamide dipeptide (AdDP) is a novel synthetic compound combining the antiviral properties of amantadine and the essential adjuvant activity of immunomodulator muramyl dipeptide. Mice were immunized with influenza A/Taiwan/1/86 (H1N1), A/Sichuan/2/87 (H3N2) and influenza B/Beijing/1/87 subunit vaccines containing AdDP or aluminium hydroxide (Al(OH)3). Induction of homologous haemagglutination-inhibition (HI) antibodies and correlation to protection against lethal aerosol influenza A/PR/8/34 (H1N1) infection were investigated. Subunit vaccine containing A/Sichuan (H3N2) and Al(OH)3 stimulated high HI antibody titres but failed to provide protection against heterologous influenza A (H1N1) challenge infection following either the primary or the secondary immunizations. In contrast, similar treatment with A/Sichuan subunit vaccine containing AdDP conferred significant protection against heterologous challenge despite low levels of circulating antibody. Primary immunization with even influenza B/Beijing subunit vaccine containing AdDP, but not Al(OH)3, provided partial protection against influenza A challenge. These results suggest that appropriate immunomodulators like AdDP can convert restricted homotypic immunity induced by inactivated influenza subunit vaccines to advantageous cross-reacting type of heterologous response.  相似文献   

19.
《Vaccine》2021,39(42):6213-6220
Since June 2020, the Y280 lineage H9N2 virus, which is distinct from the previously endemic Y439 lineage, has been circulating in poultry in Korea. In this study, we developed two whole inactivated vaccines, rgHS314 and vac564, against the Y280 and Y439 lineages, respectively, and evaluated their immunogenicity and protective efficacy against homologous or heterologous viral challenge in mice. Serum neutralizing antibody titers in the rgHS314-vaccinated group were higher (68 ± 8.4 10log2) than in the vac564-vaccinated group (18 ± 8.4 10log2). In homologous challenge, rgHS314 conferred 100% protection, with no severe clinical signs, no body weight loss, and no viral replication in any tissues tested except the nasal turbinate. Viral replication in the lungs at 1, 3, 5, and 7 days post-infection (dpi) was significantly lower than in the sham group (p < 0.01). By contrast, all mice in the sham group were dead by 8 dpi with severe clinical signs and weight loss. Likewise, vac564 conferred 100% protection with no weight loss and with significantly lower viral replication in the lung than in the sham group at 3 dpi (p < 0.01). However, both vaccines showed partial protection in heterologous challenge. Our results suggest that both the rgHS314 and vac564 vaccines could be candidate vaccines for further evaluation in humans.  相似文献   

20.
Yim K  Miles B  Zinsou R  Prince G  Boukhvalova M 《Vaccine》2012,30(7):1291-1296
Annually adjusted inactivated influenza vaccines can prevent infection and limit the spread of seasonal influenza when vaccine strain closely matches circulating strain. For the years when the match is difficult to achieve, a rapid screening of a larger repertoire of vaccines may be required but is difficult to accomplish due to the lack of a convenient small animal model of seasonal influenza vaccines. The goal of this work was to determine whether the cotton rat Sigmodon hispidus, a small laboratory animal susceptible to infection with unadapted influenza viruses, may become such a model. Cotton rats were immunized with a trivalent inactivated vaccine (TIV) FluLaval (2006/2007) and vaccine immunogenicity and antiviral efficacy was evaluated against the homologous H1N1 and a heterologous H3N2 challenge. FluLaval induced a strong virus-specific IgG and neutralizing antibody response against homologous virus, elicited sterilizing immunity in the lungs and significantly reduced viral replication in the nose of infected animals. FluLaval was efficacious in cotton rats as either a single-time or a double immunization, although higher level of protection of the upper respiratory tract was achieved following two doses of vaccine. Antibodies against a heterologous influenza strain were induced in FluLaval-vaccinated animals, but vaccine lacked antiviral efficacy and did not reduce replication of a heterologous virus. Similarity of these findings to human TIV data suggests that the cotton rat may prove to be a reliable small animal model of human influenza vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号