首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon black, short carbon fiber (SCF), and multiwall carbon nano‐tube (MWNT)‐filled conductive composites were prepared from ethylene vinyl acetate copolymer. The dielectric property and electromagnetic interference (EMI) shielding of carbon black, MWNT, and SCF‐filled composites were studied with different filler loadings. The dielectric constant and loss of filled polymer composites is due to the formation of interfacial polarization in the polymer matrix. It was found that the dielectric constant, dielectric loss, and EMI shielding of filled composites depends on amount and type of filler loading. The results of different experiments have been discussed in the light of break down and formation of continuous conductive network in polymer matrix. The results indicate that these composites can be used as effective EMI shielding materials. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers.  相似文献   

2.
Conductive polymer composites were prepared using vulcanized styrene–butadiene rubber as a matrix and conductive carbon black as a filler. The filler loading was varied from 10 to 60 phr. The volume resistivity was measured against the loading of the carbon black to verify the percolation limit. The electrical conductivity of filled polymer composites is attributed to the formation of some continuous conductive networks in the polymer matrix. These conductive networks involve specific arrangements of conductive elements (carbon black aggregates) so that the electrical paths are formed for free movement of electrons. The effects of temperature and pressure on the volume resistivity of the composites were studied. The volume resistivity of all the composites increased with increase in temperature, and the rate of increase in the resistivity against temperature depended on the loading of carbon black. The change in volume resistivity during the heating and cooling cycle did not follow the same route, leading to the phenomena of electrical hysteresis and electrical set. It was found that the composites with 40 and 60 phr carbon black become more conductive after undergoing the heat treatment. Generally, all the composites showed a positive temperature coefficient of resistivity. The volume resistivity of all the composites decreased with increase in pressure. The relaxation characteristic of the volume resistivity of the composites was studied with respect to time under a constant load. It was found that the volume resistivity of the compressed specimen of the composites decreased exponentially with time. It was observed that initially a faster relaxation process and later a slower relaxation process occurred in these composites. Some mechanical properties of these composites were also measured to confirm the efficacy of these composites for practical applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2179–2188, 2004  相似文献   

3.
Electrically conductive silicone rubber composites have been prepared through incorporation of conductive acetylene black and short carbon fibre (SCF). The percolation limit for the attainment of high conductivity is found to be relatively less for silicone rubber based composites compared to EPDM or NBR based composites reported earlier. Percolation limit is found to be lower for SCF-filled systems (7.5 phr) compared to black-filled ones (14 phr). Both black- and SCF-filled systems exhibit an increase in resistivity with the increase in temperature (PCT effect). This PCT effect may be explained in terms of differences in the thermal expansion between the rubber matrix and the conductive filler. However, resistivity-versus-temperature plots are not identical during the heating-cooling cycle, leading to some hysteresis and electrical set. The current-voltage relationship is linear (Ohmic in nature) at room temperature but becomes non-linear (non-Ohmic) at elevated temperatures. The resistivity of these composites is measured under different conditions such as on applying pressure and being subjected to different mechanical stress and strain over the specimens. An effort has been made to correlate the effect of different parameters on electrical resistivity with the change in the conductive network structure under different conditions.  相似文献   

4.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

5.
Conductive nanocomposites were prepared using styrene butadiene rubber as the polymer matrix and nanosized powder of copper–nickel (Cu–Ni) alloy as the filler. The filler loading was varied from 0 to 40 phr. The electrical conductivity of filled polymer composites is due to the formation of some continuous conductive networks in the polymer matrix. Atomic force microscopy was used to determine the particle size of the nanofiller and its nature of dispersion in the rubber matrix. The DC volume resistivity was measured against the loading of the nanofiller to check the percolation limit. The effect of temperature, applied pressure, time duration under constant compressive stress on the DC resistivity and AC conductivity of the composites with different filler loading were investigated. The change in DC resistivity and AC conductivity against temperature of these composites exhibited positive coefficient of temperature. With the change in applied pressure and time duration under constant compressive stress the DC resistivity undergoes an exponential decrease. The effect of AC field frequency on the AC conductivity was investigated. POLYM. COMPOS. 28:696–704, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
The electrical conductivity of polymer composites containing conductive fillers is strongly influenced by the structure of the particle network. Therefore, the change of this network under deformation in the molten state is of great interest, in order to obtain materials with desirable electrical properties. In this work polymethylmethacrylate containing carbon black or carbon fibres was exposed to oscillatory shear deformations and the electrical conductivity of the materials was measured simultaneously. It was found that the particle networks in the composites filled with carbon fibres were more sensitive to deformation than those of the carbon black composites. The stability of the networks increased with growing amount of fillers. Furthermore, it could be shown that conductive and rheological networks behave completely different under shear deformations.  相似文献   

7.
Temperature and time dependence of conductive network formation in vapor-grown carbon fiber (VGCF) filled high-density polyethylene (HDPE)/poly(methyl methacrylate) (PMMA), VGCF and ketjenblack (KB) filled HDPE/isotactic polypropylene (iPP) blends have been investigated. It is found that the filled conductive polymer composites are thermodynamically non-equilibrium systems, in which the conductive network formation is temperature and time dependent, a concept named as dynamic percolation is proposed. When the composites are annealed at a temperature above the melt point of polymer matrix, the dynamic process of conductive network formation can be monitored in a real time way. Such an in situ characterization method provides more interesting information about the dispersion of conductive particles in the polymer matrix. Furthermore, a thermodynamic percolation model is modified to predict the percolation time for VGCF and KB filled HDPE/iPP multi-phase systems during the annealing treatment, and it expresses experimental results well.  相似文献   

8.
Abstract

Electrically conductive rubbers have been prepared by the incorporation of conductive carbon black into ethylene/vinyl acetate (EVA) copolymers, ethylene/propylene/diene monomer (EPDM) terpolymers, and a 50 : 50 EVA–EPDM blend. The electrical and mechanical properties of these composites have been studied. The percolation limit for high conductivity in the filled rubbers depends on their compatibility as well as the viscosity and polarity of the rubbers. The electrical resistivity decreases with increasing temperature and the activation energy for conduction decreases with increasing filler loading. The temperature dependence of resistivity can be correlated with data from DSC, XRD, and DMTA measurements. Electrical set and electrical hysteresis have been observed during heating–cooling cycles. The change in resistivity with applied pressure is also reported.  相似文献   

9.
Multiphase polymer blends provide unique morphologies to reduce the percolation concentration and increase conductivity of carbon‐based polymer composites via selective distribution of the conductive filler. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The electrical conductivity of carbon black (CB)‐filled conductive polymer blend composites comprising polypropylene, poly(methyl methacrylate), and ethylene–acrylic acid were determined as a function of compounding sequence and annealing time. Kinetic and thermodynamic parameters were found to influence the conductivity. Phase morphology and conductivity at short annealing times were influenced by the compounding sequence where the CB was added after being premixed with one of the polymer components or directly added to the three‐component polymer melt. However, they were thermodynamically driven at longer annealing times; the resistivity was found to decrease by a statistically significant amount to similar levels for all the composite systems with increasing annealing time. The increase in conductivity at longer annealing times was determined to be the result of changes in the phase morphology from sea‐island, dispersed microstructure to a tri‐continuous morphology rather than change in localization of CB, given that the CB was found to be entirely located in the EAA phase even at short annealing times (and independent of compounding sequence), where the conductivity was not measurable. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42134.  相似文献   

10.
Erik T. Thostenson 《Carbon》2006,44(14):3022-3029
The novel properties of carbon nanotubes have generated scientific and technical interest in the development of nanotube-reinforced polymer composites. In order to utilize nanotubes in multi-functional material systems it is crucial to develop processing techniques that are amenable to scale-up for high volume, high rate production. In this research we investigate a scalable calendering approach for achieving dispersion of CVD-grown multi-walled carbon nanotubes through intense shear mixing. Electron microscopy was utilized to study the micro and nanoscale structure evolution during the manufacturing process and optimize the processing conditions for producing highly-dispersed nanocomposites. After processing protocols were established, nanotube/epoxy composites were processed with varying reinforcement fractions and the fracture toughness and electrical/thermal transport properties were evaluated. The as-processed nanocomposites exhibited significantly enhanced fracture toughness at low nanotube concentrations. The high aspect ratios of the carbon nanotubes in the as-processed composites enabled the formation of a conductive percolating network at concentrations below 0.1% by weight. The thermal conductivity increased linearly with nanotube concentration to a maximum increase of 60% at 5 wt.% carbon nanotubes.  相似文献   

11.
The outstanding properties of carbon nanotubes have generated scientific and technical interests in the development of nanotube-reinforced polymer composites. Therefore, we investigated a novel mixing approach for achieving a good dispersion of multiwalled carbon nanotubes (CNTs) in a rubber blend. In this approach the CNTs were incorporated into a 50:50 blend of solution-styrene-butadiene rubber and butadiene rubber. First, the CNTs were predispersed in ethanol and then this CNT-alcohol suspension was mixed with the rubber blend at elevated temperature. The rubber nanocomposites prepared by such method exhibit significantly enhanced physical properties already at very low nanotube concentrations. Additionally, we have analysed the dielectric and thermal properties of the compound. The high aspect ratio of the carbon nanotubes enabled the formation of a conductive percolating network in these composites at concentrations below 2 wt.%. In contrast to the electrical conduction behaviour, the thermal conductivity of the composites has not been influenced significantly by the presence of carbon nanotubes. Dynamic mechanical analysis indicates that the incorporation of CNTs affects the glass transition behaviour by reducing the height of the tan δ peak considerably. Above the glass transition temperature the storage modulus has been increased after incorporation of a small amount of CNTs. Finally, the ‘Payne effect’, an indication of filler-filler interactions, was observed at very low concentrations of CNT in the rubber matrix.  相似文献   

12.
In this study, a polar conductive filler [carbon black (CB)], a nonpolar polymer [polypropylene (PP)], and a polar polymer [nylon 6 (PA6)] were chosen to fabricate electrically conductive polymer composites by melt blending and compression molding. The morphological developments of these composites were studied. Scanning electron microscopy results showed that in a CB‐filled PP/PA6 (CPA) composite, CB particles were selectively dispersed in PA6 phases and could make the dispersed particles exist as microfiber particles, which could greatly improve the electrical conductivity. The PA6 and CB contents both could affect the morphologies of these composites. The results of electrical resistivity measurements of these composites proved the formation of conductive networks. The resistivity–temperature behaviors of these composites were also studied. For CB‐filled PP (CP) composites, there were apparent positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects and an unrepeatable resistivity–temperature characteristic. However, for CPA composites, there were no PTC or NTC effects from room temperature to 180°C, and the resistivity–temperature behavior showed a repeatable characteristic; this proved that CB particles were selectively dispersed in the PA6 phase from another point of view. All experimental results indicated that the addition of PA6 to a CP composite could lead to an expected morphological structure and improve the electrical conductivity of the CP composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The development of the electrical properties of composites as a function of the degree of mixedness of a conductive filler distributed into an insulating polymer is investigated. A wide‐angle X‐ray diffraction (WAXD)‐based quantitative phase analysis method was used to characterize the variations of the concentrations of the insulating binder and the conductive particles around their mean values as a function of mixing time in an intensive batch mixer. Increasing the time and hence, the specific energy input, during the mixing process results in a more homogeneous spatial distribution of the conductive filler in the polymeric matrix, which in turn results in a decrease of the volume conductivity of the composite. The decreasing conductivity of the composite is attributed to the better coating and hence the isolation of the conductive particles from each other, thus hindering the formation of a conductive network “percolation”. Overall, these results suggest that the control of the electrical properties of conductive composites could benefit from a good understanding and adequate control of the dynamics of the mixing process and the resulting degree of mixedness of the conductive particles in the polymer matrix.  相似文献   

14.
In the current study, polylactic acid/high density polyethylene/carbon black (PLA/HDPE/CB) composites are prepared via a two-step method. A double percolation network with co-continuous structure and filler distribution at the interface is constructed to design conductive polymer composites with low percolation threshold. The controllable distribution of CB at the interface is achieved by appropriate processing procedures involved mixing sequence and mixing time by taking advantage of the migration of CB from the unfavorable PLA phase to the favorable HDPE phase. Morphology characterization reveals that when the mixing time of the added HDPE is 3 min, the formation of co-continuous structure of PLA/HDPE (60/40, w/w) is observed, and CB particles migrate to the co-continuous interface. The electrical conductivity measurement shows that such double percolation conductive network reduces the percolation threshold of PLA/HDPE/CB to 2.42 wt%. The rheological property proves the establishment of particle percolation network, and the rheological percolation threshold is determined as 1.20 wt%. The prepared PLA/HDPE/CB composite by the two-step method displays a notably low percolation threshold than that prepared by one-step simultaneous mixing. Moreover, this strategy presents a high potential application in the fabrication of conductive polymer composites involving other miscible multiphase systems.  相似文献   

15.
This article describes an investigation into the effects of foaming on the electrical conductivity for a carbon‐filled cyclic olefin copolymer (COC) composite incorporating both chopped carbon fibers (cCF) and carbon black (CB). Foamed and solid samples were injection molded and then analyzed for cell size, fiber length, fiber orientation, and electrical conductivity. Foamed samples exhibited higher electrical conductivity in the through‐plane direction for materials containing only CB or composites containing both filler types, and reduced electrical conductivity in the cCF‐filled composites. The increased electrical property gained by foaming was attributed to multiple percolation with CB aggregates forming more effective conductive clusters and networks in the continuous polymer phase during growth of the gas domains. A mechanism for the phenomenon was proposed based on these experimental observations. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The electrical and mechanical properties of new conductive rubber composites based on ethylene–propylene–diene rubber, acrylonitrile butadiene rubber (NBR), and their 50/50 (weight ratio) blend filled with conductive black were investigated. The threshold concentrations for achieving high conductivity are explained on the basis of the viscosity of the rubber. The electrical conductivity increases with the increase in temperature whereas the activation energy of conduction decreases with an increase in filler loading and NBR concentration in the composites. The electrical hysteresis and electrical set are observed during the heating–cooling cycle, which is mainly due to some kind of irreversible change occurring in the conductive networks during heating. The mechanisms of conduction in these systems are discussed in the light of different theories. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 887–895, 1999  相似文献   

17.
综述了影响炭黑在两相高分子复合材料中选择性分布的因素及炭黑的选择性分布对复合材料电性能的影响,指出了炭黑填充导电高分子复合材料的研究方向。  相似文献   

18.
Chemical sensing materials based on conductive carbon black (CB) filled [styrene‐ethylene butylene‐styrene] triblock‐copolymers (SEBS) were investigated. Several types of SEBS copolymers were studied, differing in composition and melt viscosity. The sensing is based on electrical conductivity changes upon solvent sorption/desorption. Compression molding SEBS composites containing various amounts of CB were prepared. Their electrical conductivity was measured and samples containing CB, preferentially located in the continuous ethylene/butylene (EB) phase, at a level near the corresponding percolation threshold were used for the sensing experiments. The conductivity was measured during several exposure/drying cycles. Structure characterization included scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and calorimetry (DSC). The SEBS composites exhibit large reversible changes in conductivity upon exposure to a limited number of solvents, e.g., acetone, n‐heptane, and air drying cycles. This behavior was related to the sorption kinetics, affected by the solvent characteristics (solubility parameter, polarity, molecular volume and vapor pressure). The samples' resistance tended to return to their initial value upon short drying of acetone, and longer drying of other studied solvents. The nature of the SEBS, the CB content, and mixing temperature are all significant parameters, determining the sample's structure and the resultant sensing property. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Abstract

The present work presents a possibility to produce a rubber elastic and electrically conductive polymer material on the basis of dynamic vulcanisates. Thanks to the specific morphology of dynamic vulcanisates and the non-uniform carbon black distribution, carbon black filled dynamic vulcanisates can exhibit a very low percolation threshold of ~4 wt-%. Keeping the carbon black content low, a broad spectrum of resistivity properties can be achieved by variation of material factors like type and content of rubber phase and filler, concentration of cross-linking agent and compatibiliser and technological factors like mixing time respectively. In comparison with thermoplastic elastomers on the basis of block copolymers dynamic vulcanisates show a distinct lower percolation threshold. Up to a carbon black content of ~10 wt-% the mechanical properties of carbon black filled dynamic vulcanisates are not negative influenced essentially. To characterise the development of the carbon black dispersion and distribution processes and the conductivity properties in an internal mixer, the method of online measured electrical conductivity is suited very well for carbon black containing rubber mixtures. It could be shown in pre-investigations that this method promises to be a very useful tool for monitoring the mixing processes of carbon black filled dynamic vulcanisates in continuous mixing processes by means of extruders too.  相似文献   

20.
聚合物基导热复合材料的性能及导热机理   总被引:4,自引:0,他引:4       下载免费PDF全文
李宾  刘妍  孙斌  潘敏  戴干策 《化工学报》2009,60(10):2650-2655
采用不同品种、粒径的导热填料和基体树脂,以熔融共混方法制备聚合物/填料体系导热功能复合材料。研究了复合材料热导率λ和体积电阻率ρv随不同填料、粒径等因素的变化规律及其内在原因。不同填充体系的热导率均随填料粒径的减小而降低,而电导率则相反;复合体系热导率随填料含量的增加始终呈逐步上升趋势,未表现出电导率那样的急剧变化。研究表明:复合体系热导率和电导率变化的差异主要是由于二者具有不同的传导机理;复合材料热导率的变化规律可以用热弹性复合增强机制进行合理解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号