首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TNF/iNOS-producing dendritic cells (Tip-DCs) have been shown to arise during inflammation and are important mediators of immune defense. However, it is still relatively unclear which cell types contribute to their differentiation. Here we show that CD8(+) T cells, through the interaction with DCs, can induce the rapid development of human monocytes into Tip-DCs that express high levels of TNF-α and iNOS. Tip-DCs exhibited T-cell priming ability, expressed high levels of MHC class II, upregulated co-stimulatory molecules CD40, CD80, CD86, toll-like receptors TLR2, TLR3, TLR4, chemokine receptors CCR1 and CX3CR1 and expressed the classical mature DC marker, CD83. Differentiation of monocytes into Tip-DCs was partially dependent on IFN-γ as blocking the IFN-γ receptor on monocytes resulted in a significant decrease in CD40 and CD83 expression and in TNF-α production. Importantly, these Tip-DCs were capable of further driving Th1 responses by priming naive CD4(+) T cells for proliferation and IFN-γ production and this was partially dependent on Tip-DC production of TNF-α and NO. Our study hence identifies a role for CD8(+) T cells in orchestrating Th1-mediating signals through the differentiation of monocytes into Th1-inducing Tip-DCs.  相似文献   

2.
While it is well established that CD8(+) T cells generated in the absence of CD4(+) T cells mediate defective recall responses, the mechanism by which CD4(+) T cells confer help in the generation of CD8(+) T-cell responses remains poorly understood. To determine whether CD4(+) T-cell-derived IL-21 is an important regulator of CD8(+) T-cell responses in help-dependent and -independent viral infections, we examined these responses in the IL-21Rα(-/-) mouse model. We show that IL-21 has a role in primary CD8(+) T-cell responses and in recall CD8(+) T-cell responses in help-dependent viral infections. This effect is due to a direct action of IL-21 in enhancing the proliferation of virus-specific CD8(+) T cells and reducing their TRAIL expression. These findings indicate that IL-21 is an important mediator of CD4(+) T-cell help to CD8(+) T cells.  相似文献   

3.
CD4 T-cell help is not a universal requirement for effective primary CD8 T cells but is essential to generate memory CD8 T cells capable of recall responses. This study examined how CD4 T cells affect primary and secondary anti-viral CD8 T-cell responses within the central nervous system (CNS) during encephalomyelitis induced by sublethal gliatropic coronavirus. CD4 T-cell depletion before infection did not impair peripheral expansion, interferon-γ production, CNS recruitment or initial CNS effector capacity of virus-specific CD8 T cells ex vivo. Nevertheless, impaired virus control in the absence of CD4 T cells was associated with gradually diminished CNS CD8 T-cell interferon-γ production. Furthermore, within the CD8 T-cell population short-lived effector cells were increased and memory precursor effector cells were significantly decreased, consistent with higher T-cell turnover. Transfer of memory CD8 T cells to reduce viral load in CD4-depleted mice reverted the recipient CNS CD8 T-cell phenotype to that in wild-type control mice. However, memory CD8 T cells primed without CD4 T cells and transferred into infected CD4-sufficient recipients expanded less efficiently and were not sustained in the CNS, contrasting with their helped counterparts. These data suggest that CD4 T cells are dispensable for initial expansion, CNS recruitment and differentiation of primary resident memory CD8 T cells as long as the duration of antigen exposure is limited. By contrast, CD4 T cells are essential to prolong primary CD8 T-cell function in the CNS and imprint memory CD8 T cells for recall responses.  相似文献   

4.
A major contributing factor to the final magnitude and breadth of CD8(+) T-cell responses to complex antigens is immunodomination, where CD8(+) T cells recognizing their cognate ligand inhibit the proliferation of other CD8(+) T cells engaged with the same APC. In this study, we examined how the half-life of cell surface peptide-MHC class I complexes influences this phenomenon. We found that primary CD8(+) T-cell responses to DNA vaccines in mice are shaped by competition among responding CD8(+) T cells for nonspecific stimuli early after activation and prior to cell division. The susceptibility of CD8(+) T cells to 'domination' was a direct correlate of higher kinetic stability of the competing CD8(+) T-cell cognate ligand. When high affinity competitive CD8(+) T cells were deleted by self-antigen expression, competition was abrogated. These findings show, for the first time to our knowledge, the existence of regulatory mechanisms that direct the responding CD8(+) T-cell repertoire toward epitopes with high-stability interactions with MHC class I molecules. They also provide an insight into factors that facilitate CD8(+) T-cell coexistence, with important implications for vaccine design and delivery.  相似文献   

5.
CD8+ T cells provide an important component of protection against intracellular infections and cancer. Immune responses by these T cells involve a primary phase of effector expansion and differentiation, followed by a contraction phase leading to memory formation and, if antigen is re-encountered, a secondary expansion phase with more rapid differentiation. Both primary and secondary phases of CD8+ T-cell immunity have been shown to depend on CD4+ T-cell help, although during certain infections the primary phase is variable in this requirement. One explanation for such variability relates to the strength of associated inflammatory signals, with weak signals requiring help. Here, we focus on our studies that have dissected the requirements for help in the primary phase of the CTL response to herpes simplex virus, elucidating intricate interactions and communications between CD4+ T cells, various dendritic cell subsets, and CD8+ T cells. We place our studies in the context of others and describe a simple model of help where CD40 signaling amplifies innate signals to enable efficient CD8+ T-cell expansion and differentiation. This model facilitates CTL induction to various different agents, without altering the qualitative innate signals that direct other important arms of immunity.  相似文献   

6.
Immune mechanisms involved in control of cytomegalovirus (CMV) infection in the allogeneic stem cell transplantation setting have not been fully disclosed. CMV pp65 and IE-1-specific CD8(+) T cells expressing IFN-γ, TNF-α, and CD107a, alone or in combination, and NKG2C(+) NK cells were prospectively enumerated during 13 episodes of CMV DNAemia. The expansion of monofunctional and polyfunctional CD8(+) T cells was associated with CMV DNAemia clearance. The size and functional diversity of the expanding CD8(+) T-cell population was greater in self-resolved episodes than in episodes treated with antivirals. These differences were related to the magnitude of expansion of cognate antigen IFN-γ CD4(+) T cells. The resolution of CMV DNAemia was associated frequently with a marked expansion of both CD56(dim) /CD16(+) NK cells and NKG2C(+) CD56(bright) /CD16(-) NK cells. The data lend support to the role of polyfunctional CD8(+) T cells in controlling CMV replication in the allogeneic stem cell transplantation setting, and suggest that NKG2C(+) NK cells may be involved critically in the resolution of CMV DNAemia episodes.  相似文献   

7.
CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells.  相似文献   

8.
Members of the TNF and TNF receptor (TNFR) superfamily play important roles in the maintenance of homeostasis of the immune system. Furthermore, several members of the TNFR family participate in T-cell activation and sustaining T-cell responses. We have shown that TNFR2 regulates T-cell activation by lowering the activation threshold and providing costimulatory signaling. Furthermore, activated TNFR2(-/-) CD8(+) T cells are highly resistant to activation-induced cell death (AICD). Here, we showed that using anti-TNFR2 antibodies to block TNFR2 on activated WT CD8(+) T cells rendered them resistant to AICD. This resistance of activated TNFR2(-/-) CD8(+) T cells to AICD correlated with the accumulation of TNF receptor-associated factor 2 (TRAF2). Overexpression of TRAF2 by retroviral transfection and knockdown of TRAF2 by small interfering RNA also support this conclusion. Furthermore, neutralizing TNF-α reduced TRAF2 accumulation in activated TNFR2(-/-) CD8(+) T cells and increased their susceptibility to AICD. AICD-resistant TNFR2(-/-) CD8(+) T cells expressed elevated levels of phosphorylated IκBα and higher DNA-binding activity of the p65 NK-κB subunit and neutralization of TNF-α blocked this increase. Therefore, in activated TNFR2(-/-) CD8(+) T cells, TNFR1 functions as a survival receptor by utilizing high intracellular levels of TRAF2 to promote IκBα phosphorylation and NF-κB activation.  相似文献   

9.
CD4+ T-cell help (CD4 help) plays a pivotal role in CD8+ T-cell responses against viral infections. However, the role in primary CD8+ T-cell responses remains controversial. We evaluated the effects of infection route and viral dose on primary CD8+ T-cell responses to vaccinia virus (VACV) in MHC class II−/− mice. CD4 help deficiency diminished the generation of VACV-specific CD8+ T cells after intraperitoneal (i.p.) but not after intranasal (i.n.) infection. A large viral dose could not restore normal expansion of VACV-specific CD8+ T cells in i.p. infected MHC II−/− mice. In contrast, dependence on CD4 help was observed in i.n. infected MHC II−/− mice when a small viral dose was used. These data suggested that primary CD8+ T-cell responses are less dependent on CD4 help in i.n. infection compared to i.p. infection. Activated CD8+ T cells produced more IFN-γ, TNF-α and granzyme B in i.n. infected mice than those in i.p. infected mice, regardless of CD4 help. IL-2 signaling via CD25 was not necessary to drive expansion of VACV-specific CD8+ T cells in i.n. infection, but it was crucial in i.p. infection. VACV-specific CD8+ T cells underwent increased apoptosis in the absence of CD4 help, but proliferated normally and had cytotoxic potential, regardless of infection route. Our results indicate that route of infection and viral dose are two determinants for CD4 help dependence, and intranasal infection induces more potent effector CD8+ T cells than i.p. infection.  相似文献   

10.
Dendritic cells (DC), in their role in initiation of the adaptive immune response, have been extensively studied for their capacity to interact and stimulate naive T cells. Subsets of mature murine DC isolated directly from the spleen have been shown to differ in their ability to induce proliferative responses in both primary CD4(+) and primary CD8(+) T cells; the myeloid-related CD8alpha(-) DC induce a more intense or prolonged proliferation of naive T cells than do the lymphoid-related DC bearing CD8alpha despite similar expression of MHC and co-stimulatory molecules. Here we examine the interaction of these DC subpopulations with T cells already in the activated or memory state which are known to have greater sensitivity to antigen stimulation and bear receptors with increased capacity for signal transduction. We show that influenza virus-specific CD4(+) T cell clones and splenic T cells from peptide-primed animals proliferated in response to antigen presented by separated splenic CD8(-) DC. In contrast, these T cells showed only weak, if any, proliferation in response to CD8(+) DC despite observable cluster formation in the cultures. The differential between the two DC types in inducing proliferation was even more pronounced than previously seen with primary T cells and did not reflect differential longevity of the DC in culture, altered response kinetics or deviation from IL-2 to IL-4 induction with CD8(+) DC, but was related to the levels of IL-2 induced. The deficiency in the CD8(+) DC was not overcome by using infectious virus rather than synthetic peptide as the antigen source. These results show that lymphoid-related CD8(+) splenic DC, despite their mature phenotype, fail to provide appropriate signals to secondary CD4(+) T cells to sustain their proliferation.  相似文献   

11.
Dendritic cells (DC) comprise a system of professional antigen-presenting cells, which induce the stimulation of very rare antigen-specific naive T cells. DC progenitors can be stimulated to differentiate into immature DC by various growth factors, including GM-CSF and IL-4. Here we show that IL-15, in combination with GM-CSF, is a growth factor for murine DC. Murine bone marrow cells, depleted of T cells, B cells, I-A+ cells and Gr-1+ granulocytes, and cultured in the presence of GM-CSF plus IL-15 (IL-15 DC), yielded DC expressing high levels of CD11c and MHC class II molecules, as well as CD11b. These cells expressed significant levels of CD40, CD80 and CD86, and could stimulate allogeneic CD4+ T cells efficiently. Interestingly, IL-15 DC were far superior to DC generated with GM-CSF plus IL-4 in stimulating allogeneic CD8+ T cells in vitro. Consistent with this, IL-15 DC induced much more potent antigen-specific CD8+ T cell responses with high levels of Th1 cytokines in vivo, compared to DC generated with GM-CSF plus IL-4, or with GM-CSF plus TGF-beta, or with GM-CSF alone. Together, these data suggest that IL-15 promotes the development of DC, which induce potent Th1 and Tc1 responses in vivo. This suggests potential roles for these IL-15 DC cells in the immunotherapy of tumors and infectious diseases.  相似文献   

12.
CD8(+) T-cell immunity plays an important role in protection against intracellular infections. Earlier studies have shown that CD4(+) T-cell help was needed for launching in vivo CD8(+) T-cell activity against these pathogens and tumors. However, recently CD4(+) T-cell-independent CD8 responses during several microbial infections including those with Toxoplasma gondii have been described, although the mechanism is not understood. We now demonstrate that, in the absence of CD4(+) T cells, T. gondii-infected mice exhibit an extended NK cell response, which is mediated by continued interleukin-12 (IL-12) secretion. This prolonged NK cell response is critical for priming parasite-specific CD8(+) T-cell immunity. Depletion of NK cells inhibited the generation of CD8(+) T-cell immunity in CD4(-/-) mice. Similarly neutralization of IL-12 reduces NK cell numbers in infected animals and leads to the down-regulation of CD8(+) T-cell immunity against T. gondii. Adoptive transfer of NK cells into the IL-12-depleted animals restored their CD8(+) T-cell immune response, and animals exhibited reduced mortality. NK cell gamma interferon was essential for cytotoxic T-lymphocyte priming. Our studies for the first time demonstrate that, in the absence of CD4(+) T cells, NK cells can play an important role in induction of primary CD8(+) T-cell immunity against an intracellular infection. These observations have therapeutic implications for immunocompromised individuals, including those with human immunodeficiency virus infection.  相似文献   

13.
Patients with chronic renal failure undergoing hemodialysis who are infected with hepatitis C virus (HCV) may test consistently anti-HCV negative. Because CD4(+) T-cells provide help for antibody production virus-specific effector CD4(+) T-cell responses were investigated in relation to anti-HCV positivity in 15 hemodialysis patients grouped according to HCV antibody and viremia. CD4(+) T-cell reactivity was studied in peripheral blood mononuclear cells by standard lymphocyte proliferation assay and phenotypic/functional characterization (cell-surface staining/cytokine secretion) by flow cytometry. HCV-specific CD4(+) T-cell proliferation in viremic hemodialysis patients was weak or absent independently of their anti-HCV status. Virus-specific CD4(+) T-cells displayed a memory phenotype and showed low to undetectable capacity to secrete effector interferon (IFN)-gamma. Impaired activation-induced cytokine secretion appeared to be Th1 (IFN-gamma) but not Th2 (interleukin-4)-directed and was virus-specific as cytomegalovirus responses were preserved. The frequency ex vivo of CD3(+)CD4(+)IFN-gamma(+) T-cells was independent of the HCV antibody status and comparable between viremic (range: 0.08-1.54%) or non-viremic (0.11-3.2%) hemodialysis patients and healthy donors (0.13-1.10%; P = 0.58). The numbers of CD3(+)CD4(+)IFN-gamma(+) T-cells augmented slightly (P = 0.047) in HCV-infected hemodialysis patients but markedly in only one (greater than ninefold) after HCV stimulation. In conclusion, hemodialysis patients show limited HCV-specific effector CD4(+) Th1-cell responses which nonetheless seem unrelated to the anti-HCV status and are not more impaired due to the ongoing hemodialysis.  相似文献   

14.
Using T-cell receptor (TCR) transgenic mice, we demonstrate that TCR stimulation of naive CD4(+) T cells induces transient T-bet expression, interleukin (IL)-12 receptor beta2 up-regulation, and GATA-3 down-regulation, which leads to T helper (Th)1 differentiation even when the cells are stimulated with peptide-loaded I-A(b)-transfected Chinese hamster ovary cells in the absence of interferon-gamma (IFN-gamma) and IL-12. Sustained IFN-gamma and IL-12 stimulation augments naive T-cell differentiation into Th1 cells. Intriguingly, a significant Th1 response is observed even when T-bet(-/-) naive CD4(+) T cells are stimulated through TCR in the absence of IFN-gamma or IL-12. Stimulation of naive CD4(+) T cells in the absence of IFN-gamma or IL-12 with altered peptide ligand, whose avidity to the TCR is lower than that of original peptide, fails to up-regulate transient T-bet expression, sustains GATA-3 expression, and induces differentiation into Th2 cells. These results support the notion that direct interaction between TCR and peptide-loaded antigen-presenting cells, even in the absence of T-bet expression and costimulatory signals, primarily determine the fate of naive CD4(+) T cells to Th1 cells.  相似文献   

15.
Huber JP  Farrar JD 《Immunology》2011,132(4):466-474
Type I interferon (IFN-α/β) is comprised of a family of highly related molecules that exert potent antiviral activity by interfering with virus replication and spread. IFN-α/β secretion is tightly regulated through pathogen sensing pathways that are operative in most somatic cells. However, specialized antigen-presenting plasmacytoid dendritic cells are uniquely equipped with the capacity to secrete extremely high levels of IFN-α/β, suggesting a key role for this cytokine in priming adaptive T-cell responses. Recent studies in both mice and humans have demonstrated a role for IFN-α/β in directly influencing the fate of both CD4(+) and CD8(+) T cells during the initial phases of antigen recognition. As such, IFN-α/β, among other innate cytokines, is considered an important 'third signal' that shapes the effector and memory T-cell pool. Moreover, IFN-α/β also serves as a counter-regulator of T helper type 2 and type 17 responses, which may be important in the treatment of atopy and autoimmunity, and in the development of novel vaccine adjuvants.  相似文献   

16.
Human thymic stromal lymphopoietin (TSLP) promotes CD4(+) T-cell proliferation both directly and indirectly through dendritic cell (DC) activation. Although human TSLP-activated DCs induce CD8(+) T-cell proliferation, it is not clear whether TSLP acts directly on CD8(+) T cells. In this study, we show that human CD8(+) T cells activated by T-cell receptor stimulation expressed TSLP receptor (TSLPR), and that TSLP directly enhanced proliferation of activated CD8(+) T cells. Although non-stimulated human CD8(+) T cells from peripheral blood did not express TSLPR, CD8(+) T cells activated by anti-CD3 plus anti-CD28 did express TSLPR. After T-cell receptor stimulation, TSLP directly enhanced the expansion of activated CD8(+) T cells. Interestingly, using monocyte-derived DCs pulsed with a cytomegalovirus (CMV)-specific pp65 peptide, we found that although interleukin-2 allowed expansion of both CMV-specific and non-specific CD8(+) T cells, TSLP induced expansion of only CMV-specific CD8(+) T cells. These results suggest that human TSLP directly enhances expansion of CD8(+) T cells and that the direct and indirect action of TSLP on expansion of target antigen-specific CD8(+) T cells may be beneficial to adoptive cell transfer immunotherapy.  相似文献   

17.
More than 2 billion individuals are latently infected with Mycobacterium tuberculosis (Mtb). Knowledge of the key Mtb antigens and responding T-cell subsets mediating protection against Mtb is critical for developing improved tuberculosis (TB) vaccines. We previously reported that Mtb DosR-regulon-encoded antigens are recognized well by human T cells in association with control of Mtb infection. The characteristics of the responding T-cell subsets, however, remained unidentified. We have therefore studied the cytokine production and memory phenotypes of Mtb DosR-regulon-encoded antigen-specific T cells from individuals who had been infected with Mtb decades ago, yet never developed TB (long-term latent Mtb-infected individuals). Using multi-parameter flow cytometry and intracellular cytokine staining for IFN-γ, TNF-α and IL-2, we found double and single cytokine-producing CD4(+) as well as CD8(+) T cells to be the most prominent subsets, particularly IFN-γ(+) TNF-α(+) CD8(+) T cells. The majority of these T cells comprised effector memory and effector T cells. Furthermore, CFSE labeling revealed strong CD4(+) and CD8(+) T-cell proliferative responses induced by several "immunodominant" Mtb DosR antigens and their specific peptide epitopes. These findings demonstrate the prominent presence of double- and monofunctional CD4(+) and CD8(+) T-cell responses in naturally protected individuals and support the possibility of designing Mtb DosR antigen-based TB vaccines.  相似文献   

18.
Transplantation tolerance induced by neonatal injection of semi-allogeneic spleen cells is associated with a pathological syndrome caused by T helper type 2 (Th2) differentiation of donor-specific CD4(+) T lymphocytes. We have shown previously that this Th2-biased response is inhibited by host CD8(+) T cells. Herein, we demonstrate that upon neonatal immunization with (A/J × BALB/c)F(1) spleen cells, BALB/c mice expand a population of CD8(+) T cells expressing both CD25 and forkhead box P3 (FoxP3) markers. In this setting, CD8(+) CD25(+) T cells predominantly produce interferon (IFN)-γ and interleukin (IL)-10 and are efficient in controlling IL-4, IL-5 and IL-13 production by donor-specific CD4(+) T cells in vitro. CD8(+) FoxP3(-) T cells are single producers of IFN-γ or IL-10, whereas CD8(+) FoxP3(+) T cells are double producers of IFN-γ and IL-10. We further demonstrate that IFN-γ and IL-10 are two major cytokines produced by CD8(+) T cells involved in the in vivo regulation of Th2-type pathology. In this setting, we conclude that neonatal alloimmunization induces the expansion of several regulatory CD8(+) T cells which may control Th2 activities via IFN-γ and IL-10.  相似文献   

19.
CD4(+) CD25(+) regulatory T cells are increasingly recognized as central players in the regulation of immune responses. In vitro studies have mostly employed allogeneic or polyclonal responses to monitor suppression. Little is known about the ability of CD4(+) CD25(+) regulatory T cells to suppress antigen-specific immune responses in humans. It has been previously shown that CD4(+) CD25(+) regulatory T cells anergize CD4(+) T cells and turn them into suppressor T cells. In the present study we demonstrate for the first time in humans that CD4(+) CD25(+) T cells are able to inhibit the proliferation and cytokine production of antigen specific CD4(+) and CD8(+) T cells. This suppression only occurs when CD4(+) CD25(+) T cells are preactivated. Furthermore, we could demonstrate that CD4(+) T-cell clones stop secreting interferon-gamma (IFN-gamma), start to produce interleukin-10 and transforming growth factor-beta after coculture with preactivated CD4(+) CD25(+) T cells and become suppressive themselves. Surprisingly preactivated CD4(+) CD25(+) T cells affect CD8(+) T cells differently, leading to reduced proliferation and reduced production of IFN-gamma. This effect is sustained and cannot be reverted by exogenous interleukin-2. Yet CD8(+) T cells, unlike CD4(+) T cells do not start to produce immunoregulatory cytokines and do not become suppressive after coculture with CD4(+) CD25(+) T cells.  相似文献   

20.
CD8(+) T cells play an important role in controlling pathogenic infections and are therefore key players in the immune response. It has been shown that among other factors CD4(+) T cells can shape the magnitude as well as the quality of primary and/or secondary CD8(+) T-cell responses. However, due to the complexity and the differences among diverse immunization or infection models, the overall requirement, the time points, as well as the specific mechanism(s) of CD4(+) T-cell help may differ substantially. Here, we summarize current knowledge about the differential requirement of CD4(+) T-cell help in promoting primary CD8(+) T-cell responses as well as establishing functional memory CD8(+) T cells in various experimental settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号