首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
The paper takes the Upper Carboniferous Taiyuan shale in eastern uplift of Liaohe depression as an example to qualitatively and quantitatively characterize the transitional (coal-associated coastal swamp) shale reservoir. Focused Ion Beam Scanning Electron Microscope (FIB-SEM), nano-CT, helium pycnometry, high-pressure mercury intrusion and low-pressure gas (N2 & CO2) adsorption for eight shale samples were taken to investigate the pore structures. Four types of pores, i.e., organic matter (OM) pores, interparticle (InterP) pores, intraparticle (IntraP) pores and micro-fractures are identified in the shale reservoir. Among them, intraP pores and micro-fractures are the major pore types. Slit-shaped pores are the major shape in the pore system, and the connectivity of the pore-throat system is interpreted to be moderate, which is subordinate to marine shale. The porosity from three dimension (3D) reconstruction of SEM images is lower than the porosity of helium pycnometry, while the porosity trend of the above two methods is the same. Combination of mercury intrusion and gas absorption reveals that nanometer-scale pores provide the main storage space, accounting for 87.16% of the pore volume and 99.85% of the surface area. Micropores contribute 34.74% of the total pore volume and 74.92% of the total pore surface area; and mesopores account for 48.27% of the total pore volume and 24.93% of the total pore surface area; and macropores contribute 16.99% of the total pore volume and 0.15% of the total pore surface area. Pores with a diameter of less than 10 nm contribute the most to the pore volume and the surface area, accounting for 70.29% and 97.70%, respectively. Based on single factor analysis, clay minerals are positively related to the volume and surface area of micropores, mesopores and macropores, which finally control the free gas in pores and adsorbed gas content on surface area. Unlike marine shale, TOC contributes little to the development of micropores. Brittle minerals inhibit pore development of Taiyuan shale, which proves the influence of clay minerals in the pore system.  相似文献   

2.
Currently, the Upper Ordovician Wufeng (O3w) and Lower Silurian Longmaxi (S1l) Formations in southeast Sichuan Basin have been regarded as one of the most important target plays of shale gas in China. In this work, using a combination of low-pressure gas adsorption (N2 and CO2), mercury injection porosimetry (MIP) and high-pressure CH4 adsorption, we investigate the pore characteristics and methane sorption capacity of the over-mature shales, and discuss the main controlling factors for methane sorption capacity and distribution of methane gas in pore spaces.Low pressure CO2 gas adsorption shows that micropore volumes are characterized by three volumetric maxima (at about 0.35, 0.5 and 0.85 nm). The reversed S-shaped N2 adsorption isotherms are type Ⅱ with hysteresis being noticeable in all the samples. The shapes of hysteresis loop are similar to the H3 type, indicating the pores are slit- or plate-like. Mesopore size distributions are unimodal and pores with diameters of 2–16 nm account for the majority of mesopore volume, which is generally consistent with MIP results. The methane sorption capacities of O3w-S1l shales are in a range of 1.63–3.66 m3/t at 30 °C and 10 MPa. Methane sorption capacity increase with the TOC content, surface area and micropore volume, suggesting organic matter might provide abundant adsorption site and enhance the strong methane sorption capacity. Samples with higher quartz content and lower clay content have larger sorption capacity. Our data confirmed that the effects of temperature and pressure on methane sorption capacity of shale formation are opposite to some extent, suggesting that, during the burial or uplift stage, the gas sorption capacity of hydrocarbon reservoirs can be expressed as a function of burial depth. Based on the adsorption energy theory, when the pore diameter is larger than 2 nm, much methane molecular will be adsorbed in pores space with distance to pore wall less than 2 nm; while free gas is mainly stored in the pore space with distance to pore wall larger than 2 nm. Distributions of adsorption space decrease with the increasing pore size, while free gas volume increase gradually, assuming the pore are cylindrical or sphere. Particularly, when the pore size is larger than 30 nm, the content of adsorbed gas space volume is very low and its contribution to the all gas content is negligible.  相似文献   

3.
Organic shales deposited in a continental environment are well developed in the Ordos Basin, NW China, which is rich in hydrocarbons. However, previous research concerning shales has predominantly focused on marine shales and barely on continental shales. In this study, geochemical and mineralogical analyses, high-pressure mercury intrusion and low-pressure adsorption were performed on 18 continental shale samples obtained from a currently active shale gas play, the Chang 7 member of Yanchang Formation in the Ordos Basin. A comparison of all these techniques is provided for characterizing the complex pore structure of continental shales.Geochemical analysis reveals total organic carbon (TOC) values ranging from 0.47% to 11.44%, indicating that there is abundant organic matter (OM) in the study area. Kerogen analysis shows vitrinite reflectance (Ro) of 0.68%–1.02%, indicating that kerogen is at a mature oil generation stage. X-ray diffraction mineralogy (XRD) analysis indicates that the dominant mineral constituents of shale samples are clay minerals (which mainly consist of illite, chlorite, kaolinite, and negligible amounts of montmorillonite), quartz and feldspar, followed by low carbonate content. All-scale pore size analysis indicates that the pore size distribution (PSD) of shale pores is mainly from 0.3 to 60 nm. Note that accuracy of all-scale PSD analysis decreases for pores less than 0.3 nm and more than 10 μm. Experimental analysis indicates that mesopores (2–50 nm) are dominant in continental shales, followed by micropores (<2 nm) and macropores (50 nm–10 μm). Mesopores have the largest contribution to pore volume (PV) and specific surface area (SSA). In addition, plate- and sheet-shaped pores are dominant with poor connectivity, followed by hybrid pores. Results of research on factors controlling pore structure development show that it is principally controlled by clay mineral contents and Ro, and this is different from marine systems. This study has important significance in gaining a comprehensive understanding of continental shale pore structure and the shale gas storage–seepage mechanism.  相似文献   

4.
ABSTRACT

Marine manganese nodules and crusts, when processed, yield tailings which may be utilized for environmental and economic benefit. The key to the reasonable and effective utilization of these tailings lies in making a systematic appraisal of their composition and properties. This article gives an introduction to the investigation of manganese tailings properties. The tailings have a high iron and/or manganese content, high surface area, high porosity, and fine grain size. Some tailings have a high rare earth element content which is valuable. They may also have high SO3, arsenic, and uranium contents which are harmful. Depending on the process used to produce the tailings, there will likely be some differences in chemical composition, mineral assemblages, surface area and adsorption capability, pore diameter and volume, density and pH. In assigning potentially beneficial applications for these tailings, these differences should be taken into account to optimize utilization.  相似文献   

5.
As shale oil occurs primarily in micro–nano pores and fractures, research about the effect of pore structure on shale oil accumulation has great significance for shale oil exploration and development. The effect of pore structure on shale oil accumulation in the lower third member of the Shahejie formation (Es3l), Zhanhua Sag, eastern China was investigated using gas adsorption, soxhlet extraction, nuclear magnetic resonance (NMR) analysis, and field emission scanning electron microscope (FE-SEM) observation. The results indicated that the samples contained a larger amount of ink-bottle-shaped and slit-shaped pores after extraction than before extraction. The pore volume and specific surface area of the samples were approximately 2.5 times larger after extraction than before extraction. Residual hydrocarbon occurred primarily in the free-state form in pores with diameters of 10–1000 nm, which can provide sufficient pore volume for free hydrocarbon accumulation. Therefore, pores with diameters of 10–1000 nm were regarded as “oil-enriched pores”, which are effective pores for shale oil exploration, whereas pores with diameters smaller than 10 nm were regarded as “oil-ineffective pores”. Samples with only well-developed small pores with diameters smaller than 1000 nm showed high oil saturation, whereas samples with both small pores and also relatively large pores and micro-fractures presented low oil saturation. As the minimum pore size allowing fluid expulsion is 1000 nm, pores with diameters greater than 1000 nm were considered as “oil-percolated pores”. Large pores and micro-fractures are generally interconnected and may even form a complex fracture mesh, which greatly improves the permeability of shale reservoirs and is beneficial to fluid discharge.  相似文献   

6.
Marine manganese nodules and crusts, when processed, yield tailings which may be utilized for environmental and economic benefit. The key to the reasonable and effective utilization of these tailings lies in making a systematic appraisal of their composition and properties. This article gives an introduction to the investigation of manganese tailings properties. The tailings have a high iron and/or manganese content, high surface area, high porosity, and fine grain size. Some tailings have a high rare earth element content which is valuable. They may also have high SO3, arsenic, and uranium contents which are harmful. Depending on the process used to produce the tailings, there will likely be some differences in chemical composition, mineral assemblages, surface area and adsorption capability, pore diameter and volume, density and pH. In assigning potentially beneficial applications for these tailings, these differences should be taken into account to optimize utilization.  相似文献   

7.
The nano-scale pore systems of organic-rich shale reservoirs were investigated from Upper Ordovician Wufeng and Lower Silurian Longmaxi Formations in southeast Sichuan Basin. These two formations are the most important target plays of shale gas development in China. The purpose of this article is to assess the geometry and connectivity of multi-scale pore systems, and to reveal the nature and complexity of pore structure for these over-mature gas shales. To achieve these objective, total organic carbon, mineralogy, image analyses by focused ion beam-SEM, low pressure nitrogen adsorption, mercury injection capillary pressure (MICP) and spontaneous fluid [deionized (DI) water and n-decane] imbibition were performed.Most of the visible pores from SEM work in Wufeng and Longmaxi shales are within nm- and μm-size regimes and belong to organic matter (OM) pores. The shapes of OM pore in Longmaxi samples are elliptical, bubble-like, irregular or rounded. Wufeng pores are mainly irregular, linear and faveolated, even though two shales have small depth difference, as well as similar thermal maturity, kerogen type and TOC content. Nano-scale pores in Longmaxi are mainly associated with narrow platelike or slitlike pores with pore size of 3–50 nm; while inkbottle pores are dominant in Wufeng samples and over 88% of the pore volume is contributed by pores with diameter <20 nm. Overall, porosity, pore volume and surface area values from Wufeng samples are much higher than those in Longmaxi, which is mainly correlated with the different TOC contents and mineral compositions. MICP tests show that a total of 5 inflection points (indicative of different connected pore networks) are identified in all pressure regions for Longmaxi, while only 2 for Wufeng in high pressure region with the associated permeability at nano-darcy range. Imbibition curves of n-decane are divided into three stages: the initial stage (Stage Ⅰ), linear imbibition stage (Stage Ⅱ) and late imbibition stage (Stage Ⅲ), and the slopes of linear imbibition stage are around 0.5, suggesting well-connected pore spaces for n-decane. In contrast, imbibition curves for DI water are divided in two stages with linear slopes of between 0.25 and 0.5, indicating moderately-connected pore networks for the movement of DI water. This is consistent with the mixed-wet nature of these shales, with observed weak wettability for hydrophilic, while complete wetting for hydrophobic fluids.  相似文献   

8.
Understanding the pore structure characteristics of tight gas sandstones is the primary purpose of reservoir evaluation and efforts to characterize tight gas transport and storage mechanisms and their controls. Due to the various pore types and multi-scale pore sizes in tight reservoirs, it is essential to combine several techniques to characterize pore structure. Scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were conducted on tight sandstones from the Lower Cretaceous Shahezi Formation in the northern Songliao Basin to investigate pore structure characteristics systematically (e.g., type and size distribution of pores) and to establish how significant porosity and permeability are for different pore types. The studied tight sandstones are composed of intergranular pores, dissolution pores and intercrystalline pores. The integration of N2GA and NMR can be used as an efficient method to uncover full pore size distribution (PSD) of tight sandstones, with pore sizes ranging from 2 nm to dozens of microns. The full PSDs indicate that the pore sizes of tight sandstones are primarily distributed within 1.0 μm. With an increase in porosity and permeability, pores with larger sizes contribute more to porosity. Intercrystalline pores and intergranular/dissolution pores can be clearly distinguished on the basis of mercury intrusion and surface fractal. The relative contribution of intercrystalline pores to porosity ranges from 58.43% to 91.74% with an average of 79.74%. The intercrystalline pores are the primary contributor to pore space, whereas intergranular/dissolution pores make a considerably greater contribution to permeability. A specific quantity of intergranular/dissolution pores is the key to producing high porosity and permeability in tight sandstone reservoirs. The new two permeability estimation models show an applicable estimation of permeability with R2 values of 0.955 and 0.962 for models using Dmax (pore diameter corresponding to displacement pressure) and Df (pore diameter at inflection point), respectively. These results indicate that both Dmax and Df are key factors in determining permeability.  相似文献   

9.
Shale samples collected from seven wells in the southeastern Ordos Basin were tested to investigate quantitatively the pore structure and fractal characteristics of the Lower Permian Shanxi Shale, which was deposited in a marine-continental transitional (hereinafter referred to as the transitional) environment. Low-pressure nitrogen adsorption data show that the Shanxi Shale exhibits considerably much lower surface area (SA) and pore volume (PV) in the range of 0.6–1.3 m2/g and 0.25–0.9 ml/100 g, respectively. Type III kerogen abundant in the transitional Shanxi Shale were observed to be poorly developed in the organic pores in spite of being highly mature, which resulted in a small contribution of organic matter (OM) to the SA and PV. Instead, I/S (illite-smectite mixed clay) together with illite jointly contributed mostly to the SA and PV as a result of the large amount of inter-layer pores associated with them, which were evident in broad-ion-beam (BIB) imaging and statistical analysis. Additionally, the Shanxi Shale has fractal geometries of both pore surface and pore structure, with the pore surface fractal dimension (D1) ranging from 2.16 to 2.42 and the pore structure fractal dimension (D2) ranging from 2.49 to 2.68, respectively. The D1 values denote a pore surface irregularity increase with an increase in I/S and illite content attributed to their more irregular pore surface compared with other mineralogical compositions and OM. The fractal dimension D2 characterizing the pore structure complexity is closely related to the pore arrangement and connectivity, and I/S and illite decrease the D2 when their contents increase due to the incremental ordering degree and connectivity of I/S- or illite-hosted pores. Meanwhile, other shale constituents (including kaolinite, chlorite, and OM) that possess few pores can significantly increase the pore structure complexity by way of pore-blocking.  相似文献   

10.
X-ray computed tomography and serial block face scanning electron microscopy imaging techniques were used to produce 3D images with a resolution spanning three orders of magnitude from ∼7.7 μm to 7 nm for one typical Bowland Shale sample from Northern England, identified as the largest potential shale gas reservoir in the UK. These images were used to quantitatively assess the size, geometry and connectivity of pores and organic matter. The data revealed four types of porosity: intra-organic pores, organic interface pores, intra- and inter-mineral pores. Pore sizes are bimodal, with peaks at 0.2 μm and 0.04 μm corresponding to pores located at organic–mineral interfaces and within organic matter, respectively. These pore-size distributions were validated by nitrogen adsorption data. The multi-scale imaging of the four pore types shows that there is no connected visible porosity at these scales with equivalent diameter of 20 nm or larger in this sample. However, organic matter and clay minerals are connected and so the meso porosity (<20 nm) within these phases provides possible diffusion transport pathways for gas. This work confirms multi-scale 3D imaging as a powerful quantification method for shale reservoir characterisation allowing the representative volumes of pores, organic and mineral phases to be defined to model shale systems. The absence of connected porosity at scales greater than 20 nm indicates the likely importance of the organic matter network, and associated smaller-scale pores, in controlling hydrocarbon transport. . The application of these techniques to shale gas plays more widely should lead to a greater understanding of properties in the low permeability systems.  相似文献   

11.
Mineral types (detrital and authigenic) and organic-matter components of the Ordovician-Silurian Wufeng and Longmaxi Shale (siliceous, silty, argillaceous, and calcareous/dolomitic shales) in the Sichuan Basin, China are used as a case study to understand the control of grain assemblages and organic matter on pores systems, diagenetic pathway, and reservoir quality in fine-grained sedimentary rocks. This study has been achieved using a combination of petrographic, geochemical, and mercury intrusion methods. The results reveal that siliceous shale comprises an abundant amount of diagenetic quartz (40–60% by volume), and authigenic microcrystalline quartz aggregates inhibit compaction and preserve internal primary pores as rigid framework for oil filling during oil window. Although silty shale contains a large number of detrital silt-size grains (30–50% by volume), which is beneficial to preserve interparticle pores, the volumetric contribution of interparticle pores (mainly macropores) is small. Argillaceous shale with abundant extrabasinal clay minerals (>50% by volume) undergoes mechanical and chemical compactions during burial, leading to a near-absence of primary interparticle pores, while pores preserved between clay platelets are dominant with more than 10 nm in pore size. Pore-filling calcite and dolomite precipitated during early diagenesis inhibit later compaction in calcareous/dolomitic shale, but the cementation significantly reduces the primary interparticle pores. Pore-throat size distributions of dolomitic shale show a similar trend with silty shale. Besides argillaceous shale, all of the other lithofacies are dominated by OM pores, which contribute more micropores and mesopores and is positively related to TOC and quartz contents. The relationship between pore-throat size and pore volume shows that most pore volumes are provided by pore throats with diameters <50 nm, with a proportion in the order of siliceous (80.3%) > calcareous/dolomitic (78.4%) > silty (74.9%) > argillaceous (61.3%) shales. In addition, development degree and pore size of OM pores in different diagenetic pathway with the same OM type and maturity show an obvious difference. Therefore, we suggest that the development of OM pores should take OM occurrence into account, which is related to physical interaction between OM and inorganic minerals during burial diagenesis. Migrated OM in siliceous shale with its large connected networks is beneficial for forming more and larger pores during gas window. The result of the present work implies that the study of mineral types (detrital and authigenic) and organic matter-pores are better understanding the reservoir quality in fine-grained sedimentary rocks.  相似文献   

12.
Much attention have been recently paid to the upper Ordovician Wufeng shale (O3w) and lower Silurian Longmaxi shale (S1l) in the Jiaoshiba area of Sichuan Basin, which is now the largest producing shale gas field in China. Field emission scanning electron microscopy (FE-SEM), low pressure gas (N2 and CO2) adsorption, helium pycnometry, X-ray diffraction and geochemical analyses were performed to investigate the pore structure and fractal dimension of the pores in O3w-S1l shale formation in the Jiaoshiba area. FE-SEM images show that organic matter (OM) pores are dominant in the organic-rich samples and these pores are often irregular, bubble-like, elliptical and faveolate in shape, while in organic-poor samples, limited and isolated interparticle (interP), intraparticle (intraP) and OM pores are observed. Reversed S-shaped isotherms obtained from nitrogen adsorption are type Ⅱ, and hysteresis loops indicate that the shape of micropore in the samples is slit-or plate-like. BET surface areas and total pore volume vary from 12.2 to 27.1 m2/g and from 1.8 × 10−2 to 2.9 × 10−2 cm3/g, with an average of 19.5 m2/g and 2.3 × 10−2 cm3/g, respectively. Adsorption volume from both N2 and CO2 adsorption increases with respect to TOC contents. Porosities obtained from helium porosimetry are comparable with these from gas (CO2 and N2) adsorption in O3w-S1l shale. However, porosity determined by quantitative FE-SEM analysis is much smaller, which is mainly related to limited resolution and the small areas of investigation.Based on the Frenkel-Halsey-Hill (FHH) model of low-pressure N2 adsorption, fractal dimensions of the pores varied from 2.737 to 2.823. Relationships between pore structure parameters and TOC content, mineral composition and fractal dimension reveal that the fractal dimension is mainly associated with micropores. Samples with higher TOC content, higher quartz content and lower clay content tend to contain more heterogeneous micropores, resulting in higher fractal dimensions and more complicated pore structure in shales. Therefore, fractal dimension is an effective parameter to reflect the complexity of pore structure and the degree of micropore development in O3w-S1l shale.  相似文献   

13.
The Lower Silurian Longmaxi Shale in the southeastern Upper Yangtze Region, which has been the main target for shale gas exploration and production in China, is black marine organic-rich shale and rich in graptolites. Graptolites, usually only periderms preserved in shales, are important organic component of the Longmaxi Shale. However, the pore structure of graptolite periderms and its contribution to gas storage has not yet been studied before. A combination of optical microscopy for identification and “mark” of graptolite and scanning electron microscope (SEM) for pore observations were conducted for the Longamxi Shale samples. Results show that pores are anisotropic developed in the Longmaxi graptolite periderms and greatly associated with their fine structure. Micrometer-sized fractures and spindle-shaped pores between cortical fibrils in the cortical bandage are greatly developed at section parallel to the bedding, while they are rare at section perpendicular to the bedding. Besides, numerous sapropel detritus rich in nanometer-sized pores are discretely distributed in the shale. Though graptolite periderms are low porosity from SEM image analysis, microfractures and elongated pores along the graptolite periderm wall may still make the graptolite an interconnected system. Together with the discrete porous sapropel detritus in shale, these graptolite-derived Organic Matter (OM) may form an interconnected organic pore system in the shale. The difference of pore development observed in graptolite periderms and sapropel detritus also give us new insight for the organic pore heterogeneity study. The OM composition, their fine structure and orientation in the rock may be important factors controlling OM pore development. The combination of identifying OM type under optical microscopy and pores observation under SEM for may be an effective method to study the OM pore development especially in shale that contain more OM.  相似文献   

14.
George Anastasakis   《Marine Geology》2007,240(1-4):113-135
Santorini volcano has been the largest source of volcaniclastic sediment in the Eastern Mediterranean during the late Quaternary. A dozen cores from the Cretan Basin, south of Santorini, have sampled two megabeds that consist of gravity emplaced volcaniclastic sequences. The uppermost megabed U consists of a succession of five (U5–U1) base cut out turbiditic units. Lower megabed A is a single turbiditic event. Only the uppermost U2 and U1 turbidites are separated from the underlying beds by hemipelagic marls. The texture and composition of the U and A megabeds closely match the texture and composition of the fine, vitric ash of the “Minoan” deposits on Santorini islands, dating from about 3500 yr BP. These megabeds are therefore attributed to rapid accumulation of separate gravity flows fed by the “Minoan” eruption, except for the upper U2 and U1 turbidites deposited from subsequent gravity flows transporting eroded volcaniclastic sediments. With the exception of the margin south of Santorini, dozens of cores retrieved around the margins of the Cretan Basin have a continuous late Quaternary succession that shows no evidence for massive sediment remobilization into the deeper basin, including the passage of the “Minoan” tsunami.

Extensive high-resolution 3.5 kHz records revealed the acoustic character, architecture and distribution of the U and A megabeds and four underlying late Quaternary volcanogenic megabeds in the Cretan Basin. The acoustic facies of megabeds are typical of megaturbidites and consist of an upper, transparent, lower velocity layer that corresponds to the fine-grained upper turbiditic silt and clay section and a lower, strongly reflective higher velocity section that corresponds to the lowest, coarser-grained base of the turbidite that is developed over a sharp erosional surface. Penetration of the high-resolution records reveals the existence of at least six megabeds. Correlation with core lithology and the physical properties of the various lithofacies, including down-core velocity profiles, has allowed us to determine the thickness and volumes of the upper four megabeds which are: U ≤ 9 m thick, volume 3.7 km3; A ≤ 25 m thick, volume 12.2 km3; B ≤ 22 m thick, volume 10.3 km3; C ≤ 15 m thick, volume 8 km3. These thick megabeds are the uppermost products of repeated explosive eruption of Santorini in the late Quaternary. Calculated sedimentation rates from and after the “Minoan” eruption are 9.4 m/1000 yr that rise to over 15.7 m/1000 yr if megabed B was also deposited during this eruption.  相似文献   


15.
实验以 Ti Cl4 为主要原料 ,采用直接水解法制备出了 Ti O2 样品。经差热 -热重 ( DTA-TG)、X-射线衍射 ( XRD)、透射电子显微镜 ( TEM)和比表面 ( BET)分析 ,得出样品 Ti O2 的晶型为金红石型 ,其粒子近似呈球形 ,各个晶面所对应的粒径基本一致 ,分布在 7.0~ 12 .0 nm之间 ,平均粒径为 10 .5nm,对应的比表面积和孔容积分别为 166m2 /g和 0 .12 m L/  相似文献   

16.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

17.
A sedimentary record spanning 5792–5511 cal yr BP and 3188–2854 cal yr BP was recovered at 36° 45′ 43″ S–56 ° 37′ 13″ W, south-west South Atlantic. The sedimentological features and micropaleontological (benthic foraminifera and ostracoda) content were analyzed in order to reconstruct paleoenvironmental conditions. Considerable environmental fluctuations are indicated by all these proxies. Five different stages were distinguished: Stage 1 (ca. 5800–5000 cal yr BP) consists of muddy sand with abundant microfossils. In this interval, species typical for inner marine shelf environments maintained a high abundance. Stage 2 consists of plastic light greenish grey clays barren of microfossils, and probably represents fluvial input from the de la Plata River to the shelf contemporaneous of a lowering of sea level. Stage 3 is composed of brownish yellow sandy silts, and represents increasing marine conditions in the area as reflected by higher faunal diversity and typical foraminifera of inner shelf environments. Stage 4 is made of homogeneous mud, barren of microfossil, which represents a new pulse of fluvial input to the shelf in consequence of a new fall in sea level. The final part of the core (Stage 5) is a coarsening upward sequence, grading from greeny brown clayey sandy silts to coarse shelly sands and represents the modern sedimentation in the area. This interpretation strengthens the stepped model of late-Holocene sea-level fall between 5511–5792 cal yr BP and 2854–3188 cal yr BP in Buenos Aires coast, and agrees with the relative sea-level history previously proposed by some authors from western South Atlantic coasts.  相似文献   

18.
Shales from the Lower Silurian Longmaxi Formation in the Sichuan Basin are among the most important shale gas reservoirs in China, and have been investigated because of their great shale gas potential. To understand the pore structure and fractal characteristics of the shales, a series of experiments was conducted on core samples from the Lower Silurian Longmaxi Formation in the Sichuan Basin of China, including X-ray diffraction (XRD), total organic carbon (TOC) content and vitrinite reflectance (Ro) analysis, field emission-environmental scanning electron microscope (FE-ESEM) observation, and low-pressure N2 adsorption-desorption experiments. Frenkel-Halsey-Hill (FHH) method was applied to calculate fractal dimensions. In addition, the pore genesis, the relationships between composition and thermal maturity, the pore structure parameters, and the fractal dimensions are discussed. FE-ESEM observation results show that the Longmaxi Formation shales are dominated by organic-matter (OM) pores along with interparticle (interP) pores, intraparticle (intraP) pores and fracture pores. This study identified the fractal dimensions at relative pressures of 0–0.45 and 0.45–1 as D1 and D2 respectively. D1 ranged from 2.60 to 2.71 and D2 ranged from 2.71 to 2.82. D1 was typically smaller than D2, indicating that the smaller pores in shales were more homogeneous than the larger ones. The formation of these OM pores is owing to kerogen deformation during the thermal maturation, which results in a large number of nanopores. The pore structure of the Longmaxi Formation shales is primarily controlled by TOC content and thermal maturity. TOC content is a controlling factor on the fractal dimensions as it exhibited positive correlations with D1 and D2. Fractal dimensions are useful for the characterization of the pore structures complexity of the Longmaxi Formation shales because D1 and D2 correlate well with pore structure parameters as they both increase with the increase of surface area and the decrease of average pore diameter.  相似文献   

19.
Studying complex pore structures is the key to understanding the mechanism of shale gas accumulation. FIB-SEM (focused ion beam-scanning electron microscope) is the mainstream and effective instrument for imaging nanopores in gas shales. Based on this technology, 2D and 3D characteristics of shale samples from Lower Silurian Longmaxi formation in southern Sichuan Basin were investigated. 2D experimental results show that the pores in shale are nanometer-sized, and the structure of those nanopores can be classified into three types: organic pores, inorganic pores and micro fractures. Among the three types, organic pores are dominantly developed in the OM (organic matter) with three patterns such as continuous distributed OM, OM between clay minerals and OM between pyrite particles, and the size of organic pores range from 5 nm to 200 nm.Inveresly, inorganic pores and micro fractures are less developed in the Longmaxi shales. 3D digital rocks were reconstructed and segmented by 600 continuous images by FIB cutting and SEM imaging simultaneously. The pore size distribution and porosity can be calculated by this 3D digital core, showing that its average value is 32 nm and porosity is 3.62%.The 3D digital porosity is higher than its helium porosity, which can be regarded as one important parameter for evaluation of shale gas reserves. The 2D and 3D characterized results suggest that the nanometer-sized pores in organic matter take up the fundamental storage space for the Longmaxi shale. These characteristics have contributed to the preservation of shale gas in this complex tectonic area.  相似文献   

20.
We aim to relate the morphology of the pore network of finely porous claystones to their fluid transport properties. By using Focused Ion Beam in combination with Scanning Electron Microscopy (FIB/SEM), we image the pore network of COx claystone from 2D image stacks and as 3D reconstructed volumes. Our FIB/SEM samples are representative of the mesoscopic matrix clay. Porosity resolvable by this technique is in the range 1.7–5.9% with peak pore sizes of 50–90 nm. 3D pore network skeletonization provides connected pore volumes between end surfaces, tortuosity, density, and shortest pore paths with their pore size distribution. At higher resolution, 2D transmission electron microscopy (TEM) reveals large amounts of smaller pores (2–20 nm) between clay aggregates, associated to a local porosity of 14–25%, and peak sizes of 4–6 nm. Liquid permeability predictions with Katz–Thompson model, at the FIB/SEM volume scale and at the TEM surface scale, are in good agreement with macroscopic measurements (on the order of 10−20 m2), showing that both mesopore sizes (peaks at 50–90 nm and 4–6 nm), located within the clay matrix, contribute to liquid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号