首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Near-field scanning optical microscopy (NSOM) offers high optical resolution beyond the diffraction limit for various applications in imaging, sensing, and lithography; however, for many applications the very low brightness of NSOM aperture probes is a major constraint. Here, we report a novel NSOM aperture probe that gives a 100× higher throughput and 40× increased damage threshold than conventional near-field aperture probes. These brighter probes facilitate near-field imaging of single molecules with apertures as small as 45 nm in diameter. We achieve this improvement by nanostructuring the probe and by employing a novel variant of extraordinary optical transmission, relying solely on a single aperture and a coupled waveguide. Comprehensive electromagnetic simulations show good agreement with the measured transmission spectra. Due to their significantly increased throughput and damage threshold, these resonant configuration probes provide an important step forward for near-field applications.  相似文献   

2.
Liu L  He S 《Applied optics》2005,44(17):3429-3437
A dispersive body-of-revolution finite-difference time-domain method is developed to simulate metal-cladded near-field scanning optical microscope (NSOM) probes. Two types of NSOM probe (aperture and plasmon NSOM probes) are analyzed and designed with this fast method. The influence of the metal-cladding thickness and the excitation mode on the performance of the NSOM probes is studied. We introduce a new scheme of illumination-mode NSOM by employing the plasmon NSOM probe with the TM01 mode excitation. Such a NSOM probe is designed, and we demonstrate its advantages over the conventional aperture NSOM probe by scanning across a metallic object.  相似文献   

3.
Minh PN  Ono T  Tanaka S  Esashi M 《Applied optics》2001,40(15):2479-2484
We present experimental measurements and simulation of the spatial distribution of near-field light at the aperture of a Si micromachined near-field scanning optical microscopy (NSOM) probe. A miniature aperture at the apex of a SiO(2) tip on a Si cantilever was fabricated with the low temperature oxidation and selective etching technique. An optical transmission efficiency (optical throughput) of the fabricated probe was determined to be approximately 10(-2) when the aperture size was approximately 100 nm, which is several orders of magnitude higher than that for conventional optical fibers. A three-dimensional finite difference time domain (FDTD) simulation shows that the near-field light is well confined within the aperture area with a throughput of 1% for a 100-nm aperture, which is in good agreement with the measurement. The spatial distribution of the near-field light at an aperture of 300-nm diameter shows a full width at half-maximum of 250 nm with a sharp peak that is nearly 60 nm wide. The 2.4% throughput for a 300-nm aperture was estimated based on the measured spatial distribution of the near-field light that is almost the same as the experimental result. We also present the initial results of the fabrication of high throughput coaxial and surface plasmon enhancement NSOM probes.  相似文献   

4.
Wang Y  Srituravanich W  Sun C  Zhang X 《Nano letters》2008,8(9):3041-3045
Nearfield scanning optical microscopy (NSOM) offers a practical means of optical imaging, optical sensing, and nanolithography at a resolution below the diffraction limit of the light. However, its applications are limited due to the strong attenuation of the light transmitted through the subwavelength aperture. To solve this problem, we report the development of plasmonic nearfield scanning optical microscope with an efficient nearfield focusing. By exciting surface plasmons, plasmonic NSOM probes are capable of confining light into a 100 nm spot. We show by nearfield lithography experiments that the intensity at the near field is at least one order stronger than the intensity obtained from the conventional NSOM probes under the same illumination condition. Such a high efficiency can enable plasmonic NSOM as a practical tool for nearfield lithography, data storage, cellular visualization, and many other applications requiring efficient transmission with high resolution.  相似文献   

5.
Owing to their promise of obtaining optical as well as topographic information in nanometer scale, apertureless near-field scanning optical microscopy (NSOM) and apertureless near-field scanning optical spectroscopy have drawn much attention recently. However, NSOM is still not a mature technique. A proper understanding of and the ability to tune the near field around the tip end is critically important in NSOM instrumentation and in NSOM image interpretation. On the basis of reflection geometry, we systematically studied the effects of a number of parameters pertinent in the application of apertureless NSOM, e.g., polarization, incident angle, wavelength of the incident laser, tip material, and tip length, by using the generalized field propagator technique. Our results show that all the above parameters have a significant influence on near-field enhancement and that care must be taken in the design of the experiment in order to maximize the near field. In addition to apertureless NSOM and spectroscopy, apertureless near-field lithography can benefit from these simulation results.  相似文献   

6.
We report fabrication and use of a flexible array of nano-apertures for photolithography on curved surfaces. The batch-fabricated apertures are formed of metal-coated silicone tips. The apertures are formed at the end of the silicone tips by either electrochemical etching of the metal or plasma etching of a protective mask followed by wet chemical etching. The apertures are as small as 250 nm on substrates larger than several millimeters. We demonstrate how the nano-aperture array can be used for nano-fabrication on flat and curved substrates, and show the subsequent fabrication steps to form large arrays of sub-micron aluminum dots or vertical silicon wires.  相似文献   

7.
The elliptical average of small-angle scattering data requires the two-dimensional detector to be divided into concentric elliptical rings of some width with an eccentricity and orientation determined from the data. A modified scattering vector which contains the elliptical dependence is defined, and an expression is derived for the resolution of the elliptically binned data which has a form similar to that for the circularly averaged data. The optimization conditions are such that the appropriate binning width depends on the spectrometer apertures and on the eccentricity of the data.  相似文献   

8.
We describe a new technique that incorporates polarization modulation into near-field scanning optical microscopy (NSOM) for nanometer scale polarimetry studies. By using this technique, we can quantitatively measure the optical anisotropy of materials with both the high sensitivity of dynamic polarimetry and the high spatial resolution of NSOM. The magnitude and relative orientation of linear birefringence or linear dichroism are obtained simultaneously. To demonstrate the sensitivity and resolution of the microscope, we map out stress-induced birefringence associated with submicrometer defects at the fusion boundaries of SrTiO3 bicrystals. Features as small as 150 nm were imaged with a retardance sensitivity of approximately 3 x 10(-3) rad.  相似文献   

9.
In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are suitable for probing, manipulating, sculpting, and sensing at single digit nanoscale.  相似文献   

10.
Abstract

For focusing the elliptical Gaussian beam directly, the effects of a non-circular aperture on the focusing properties are studied. The focusing properties for different shapes of apertures, which include a circle, an ellipse and a rectangle, are calculated and compared. Moreover, for different elliptical Gaussian beams, an empirical aperture selection rule that can be used to circularize the focusing spot is proposed. The energy transmission ratios are also considered in this paper.  相似文献   

11.
Byard K 《Applied optics》2012,51(16):3453-3460
A class of flexible coded apertures, called index class apertures, is presented. The configurations are shown to possess similar properties to the geometric apertures of Gourlay and Stephen [Appl. Opt.22, 4042 (1983)], and it is demonstrated that the modified uniformly redundant arrays (MURAs) are a special case of the index class apertures. The apertures are shown to offer both a larger range of throughput values and better imaging capability than is available to the geometric apertures, while at the same time possessing more rigidity of structure than other designs, such as the MURAs and the uniformly redundant arrays.  相似文献   

12.
Kim J  Oh C  Serati S  Escuti MJ 《Applied optics》2011,50(17):2636-2639
We introduce and demonstrate a ternary nonmechanical beam steering device based on polarization gratings (PGs). Our beam steering device employs multiple stages consisting of combinations of PGs and wave plates, which allows for a unique three-way (ternary) steering design. Ultrahigh efficiency (~100%) and polarization sensitive diffraction of individual PGs allow wide steering angles (among three diffracted orders) with extremely high throughput. We report our successful demonstration of the three-stage beam steerer having a 44° field of regard with 1.7° resolution at 1550 nm wavelength. A substantially high throughput of 78%-83% is observed that is mainly limited by electrode absorption and Fresnel losses.  相似文献   

13.
Zaleta D  Larsson M  Daschner W  Lee SH 《Applied optics》1995,34(14):2436-2447
Optoelectronic systems based on space-variant optics give great freedom to the system designer in terms of interconnect topologies. One feature of space-variant systems is that they can achieve a high interconnect density. However, this density is achieved by having large arrays of diffractive elements with very small apertures relative to the propagation distances involved. Thus diffraction losses from the finite apertures can significantly affect power throughput for these types of systems, regardless of the diffractive efficiencies of the optical elements involved. Therefore it is desirable that this loss be minimized. We present several space-variant optical interconnect design methods (for both one-to-one and fan-out interconnects) and compare them in terms of power throughput for diffraction-limited interconnect distances. Both numerical simulations and experimental results are presented.  相似文献   

14.
Ko T  Tzeng CL  Wang JH 《Applied optics》1994,33(33):7693-7697
The output of a fiber-current sensor with a nonideal input (either misaligned linear or elliptical polarization) and moderate output misalignment in the setup (the fiber end versus the Wollaston prism) has been considered. Based on this, a novel method that uses a statistical approach, including a set of scanning elliptical polarization inputs and the corresponding curve-fitting outputs for a given current, is used to determine the birefringence of the fiber-current-sensing system. The experimentally measured bend-induced birefringence agrees with the estimated value of the bend birefringence.  相似文献   

15.
Laser sources offer a possible solution to the problem of low light throughput in direct-view microscopes (DVMs). However, coherent source DVMs have been shown to suffer from problems such as increased sidelobes in the depth response because of coherent cross talk between neighboring apertures. We explore theoretically how source coherence affects the depth responses of DVMs by employing various aperture spacings and number of apertures. We show that, contrary to expectation, closely spaced apertures can result in decreased full width at half-maximum of the depth response curve. We explain this as an effect of destructive interference when cross talk between neighboring apertures occurs. Using apertures arranged in a square grid as an example, we move on to show that the use of aperture arrays that consist of regularly arranged apertures can accentuate the problematic sidelobes of the depth response. We show that arranging pinholes in a rectangular grid rather than a square grid can improve the optical sectioning strength significantly. Finally, by examination of the depth responses corresponding to the infinite-pinhole-array limit, we make some general statements about source coherence and the characteristics of arrays that are likely to perform well.  相似文献   

16.
Kurita H  Kawai S 《Applied optics》1997,36(5):1017-1022
Novel quasi-toric planar microlenses (PML's) suitable for planar optics are proposed. The PML's have elliptical apertures, and they are astigmatism free for oblique-incidence light beams. A simple PML model is proposed for designing the quasi-toric PML. Fabricated quasi-toric PML's were evaluated to demonstrate their chip-to-chip interconnection probability.  相似文献   

17.
A cantilever-based probe is introduced for use in scanning near-field optical microscopy (SNOM) combined with scanning atomic-force microscopy (AFM). The probes consist of silicon cantilevers with integrated 25-mum-high fused-silica tips. The probes are batch fabricated by microfabrication technology. Transmission electron microscopy reveals that the transparent quartz tips are completely covered with an opaque aluminum layer before the SNOM measurement. Static and dynamic AFM imaging was performed. SNOM imaging in transmission mode of single fluorescent molecules shows an optical resolution better than 32 nm.  相似文献   

18.
Y Cai  Y Li  P Nordlander  PS Cremer 《Nano letters》2012,12(9):4881-4888
Herein, a new and facile patterning method is demonstrated for the scalable fabrication of gold elliptical rings (ERs) in a controlled manner over large areas. In this method, well-ordered hexagonally arrayed polystyrene (PS) rings, fabricated by colloidal lithography, were used as masters to generate poly(dimethylsiloxane) (PDMS) stamps with circular apertures. The stamps were then stretched and utilized as molds for creating elliptical PS rings by a capillary filling process. Through subsequent reactive ion etching and chemical wet-etching, the elliptical PS rings could be readily transferred into an underlying gold film, leading to the formation of gold ERs. Since the aspect ratio (AR) of the elliptical PS rings could be controlled by varying the applied strain during the capillary filling process, gold ERs with different ARs could be fabricated in a scalable manner. The optical properties of the gold ERs were characterized by UV-vis/NIR and IR extinction measurements. The ERs exhibited only odd modes of polarization-dependent plasmonic resonances at normal incidence. The experiments and corresponding theoretical studies illustrated that all resonant modes could be tuned across a broad spectral range from the visible to the mid infrared (550-4700 nm) by simply varying the AR of the ERs. Moreover, the experimental data were confirmed by COMSOL simulations.  相似文献   

19.
Tsai CC  Chou C  Han CY  Hsieh CH  Liao KY  Chao YF 《Applied optics》2005,44(35):7509-7514
What is believed to be a novel phase-sensitive optical heterodyne interferometric ellipsometer is set up to characterize a twisted-nematic liquid crystal (TN-LC) by the elliptical parameters of the output polarization state. This ellipsometer presents the advantages of both polarized optical heterodyne interferometry and optical photometry, which introduce a polarization modulation that is capable of performing with high-sensitivity on phase detection in real time. The twist angle phi and the untwisted phase retardation gamma of TN-LC are measured precisely. The experimental results verify that a TN-LC can be treated as identical to an elliptical retarder.  相似文献   

20.
Individual metal alloy nanowires of constant diameter and high aspect ratio have previously been self-assembled at selected locations on atomic force microscope (AFM) probes by the method reported in Yazdanpanah et al (2005 J. Appl. Phys. 98 073510). This process relies on the room temperature crystallization of an ordered phase of silver-gallium. A parallel version of this method has been implemented in which a substrate, either an array of micromachined tips (similar to tips on AFM probes) or a lithographically patterned planar substrate, is brought into contact with a continuous, nearly planar film of melted gallium. In several runs, freestanding wires are fabricated with diameters of 40-400 nm, lengths of 4-80 μm, growth rates of 80-170 nm s( - 1) and, most significantly, with yields of up to 97% in an array of 422 growth sites. These results demonstrate the feasibility of developing a batch manufacturing process for the decoration of wafers of AFM tips and other structures with selectively patterned freestanding nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号