首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The distal region of a short arm of chromosome 1p is frequently deleted in many human cancers including neuroblastoma (NBL), in which it has been narrowed down to the smallest region of overlap between D1S244 and D1S214 (approximately 7 cM). During the search for the candidate tumor suppressor genes mapped within the region, we found the KIAA0591 gene which encoded a new human kinesin-related protein with a homology to human axonal transporter of synaptic vesicles (ATSV). The kinesin is an intracellular motor protein and often associated with neuronal differentiation and survival. Here we identified a complete open reading frame of the KIAA0591 gene by screening a cDNA library derived from human substantia nigra. The KIAA0591 protein contains a possible pleckstrin homology (PH) domain at its carboxy-terminus. However, it did not possess a force-generating motor domain which is well conserved among kinesin superfamily members (KIFs). Northern blot analysis demonstrated that KIAA0591 mRNA was preferentially expressed in both adult and fetal brains, kidney, skeletal muscle and pancreas. KIAA0591 was expressed in favorable NBLs at higher levels than in unfavorable NBLs, although RT-PCR SSCP analysis showed no mutation within the coding region of the KIAA0591 gene, when 8 neuroblastoma tissues and 15 neuroblastoma-derived cell lines were examined. Thus, the full-length KIAA0591 gene may be a novel member of human KIF superfamily which lacks motor domain and might function as a tumor suppressor in an epigenetic but not a classic Knudson's manner.  相似文献   

3.
4.
5.
Loss of heterozygosity of the distal region of chromosome 1p where tumor suppressor gene(s) might harbor is frequently observed in many human cancers including neuroblastoma (NBL) with MYCN amplification and poor prognosis. We have identified for the first time a homozygously deleted region at the marker D1S244 within the smallest region of overlap at 1p36.2-p36.3 in two NBL cell lines, NB-1 and NB-C201 (MASS-NB-SCH1), although our genotyping has suggested the possibility that both lines are derived from the same origin. The 800-kb PAC contig covering the entire region of homozygous deletion was made and partially sequenced (about 60%). The estimated length of the deleted region was 500 kb. We have, thus far, identified six genes within the region which include three known genes (DFF45, PGD, and CORT) as well as three other genes which have been reported during processing our present project for the last 3(1/2) years (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14). They include the genes related to apoptosis, glucose metabolism, ubiquitin-proteasome pathway, a neuronal microtubule-associated motor molecule and biogenesis of peroxisome. At least three genes (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14) were differentially expressed at high levels in favorable and at low levels in unfavorable subsets of primary neuroblastoma. Since the 1p distal region is reported to be imprinted, those differentially expressed genes could be the new members of the candidate NBL suppressor, although RT-PCR-SSCP analysis has demonstrated infrequent mutation of the genes so far identified. Full-sequencing and gene prediction for the region of homozygous deletion would elucidate more detailed structure of this region and might lead to discovery of additional candidate genes. Oncogene (2000) 19, 4302 - 4307  相似文献   

6.
7.
KIF1Bβ, a member of the kinesin superfamily of motor proteins, is a haploinsufficient tumor suppressor mapped to chromosome 1p36.2, which is frequently deleted in neural crest–derived tumors, including neuroblastoma and pheochromocytoma. While KIF1Bβ acts downstream of the nerve growth factor (NGF) pathway to induce apoptosis, further molecular functions of this gene product have largely been unexplored. In this study, we report that KIF1Bβ destabilizes the morphological structure of mitochondria, which is critical for cell survival and apoptosis. We identified YME1L1, a mitochondrial metalloprotease responsible for the cleavage of the mitochondrial GTPase OPA1, as a physical interacting partner of KIF1Bβ. KIF1Bβ interacted with YME1L1 through its death‐inducing region, as initiated the protease activity of YME1L1 to cleave the long forms of OPA1, resulting in mitochondrial fragmentation. Overexpression of YME1L1 promoted apoptosis, while knockdown of YME1L1 promoted cell growth. High YME1L1 expression was significantly associated with a better prognosis in neuroblastoma. Furthermore, in NGF‐deprived PC12 cells, KIF1Bβ and YME1L1 were upregulated, accompanied by mitochondrial fragmentation and apoptotic cell death. Small interfering RNA–mediated knockdown of either protein alone, however, remarkably inhibited the NGF depletion–induced apoptosis. Our findings indicate that tumor suppressor KIF1Bβ plays an important role in intrinsic mitochondria–mediated apoptosis through the regulation of structural and functional dynamics of mitochondria in collaboration with YME1L1. Dysfunction of the KIF1Bβ/YME1L1/OPA1 mechanism may be involved in malignant biological features of neural crest–derived tumors as well as the initiation and progression of neurodegenerative diseases.  相似文献   

8.
9.
Although it has been well documented that loss of human chromosome 11q is frequently observed in primary neuroblastomas, the smallest region of overlap (SRO) has not yet been precisely identified. Previously, we performed array-comparative genomic hybridization (array-CGH) analysis for 236 primary neuroblastomas to search for genomic aberrations with high-resolution. In our study, we have identified the SRO of deletion (10-Mb or less) at 11q23. Within this region, there exists a TSLC1/IGSF4/CADM1 gene (Tumor suppressor in lung cancer 1/Immunoglobulin superfamily 4/Cell adhesion molecule 1), which has been identified as a putative tumor suppressor gene for lung and some other cancers. Consistent with previous observations, we have found that 35% of primary neuroblastomas harbor loss of heterozygosity (LOH) on TSLC1 locus. In contrast to other cancers, we could not detect the hypermethylation in its promoter region in primary neuroblastomas as well as neuroblastoma-derived cell lines. The clinicopathological analysis demonstrated that TSLC1 expression levels significantly correlate with stage, Shimada's pathological classification, MYCN amplification status, TrkA expression levels and DNA index in primary neuroblastomas. The immunohistochemical analysis showed that TSLC1 is remarkably reduced in unfavorable neuroblastomas. Furthermore, decreased expression levels of TSLC1 were significantly associated with a poor prognosis in 108 patients with neuroblastoma. Additionally, TSLC1 reduced cell proliferation in human neuroblastoma SH-SY5Y cells. Collectively, our present findings suggest that TSLC1 acts as a candidate tumor suppressor gene for neuroblastoma.  相似文献   

10.
11.
PURPOSE: To investigate the prevalence and potential clinical significance of epigenetic aberrations in neuroblastoma (NB). EXPERIMENTAL DESIGN: The methylation status of 11 genes that are frequently epigenetically inactivated in adult cancers was assayed in 13 NB cell lines. The prevalence of RASSF1A and TSP-1 methylation was also analyzed in 56 NBs and 5 ganglioneuromas by methylation-specific PCR. Associations between the methylation status of RASSF1A and TSP-1 and patient age, tumor stage, tumor MYCN status, and patient survival were evaluated. RESULTS: Epigenetic changes were detected in all 13 NB cell lines, although the pattern of gene methylation varied. The putative tumor suppressor gene RASSF1A was methylated in all 13 cell lines, and TSP-1 and CASP8 were methylated in 11 of 13 cell lines. Epigenetic changes of DAPK and FAS were detected in only small numbers of cell lines, whereas none of the cell lines had methylation of p16, p21, p73, RAR-beta2, SPARC, or TIMP-3. RASSF1A was also methylated in 70% of the primary NB tumors tested, and TSP-1 methylation was detected in 55% of the tumors. RASSF1A methylation was significantly associated with age >1 year (P < 0.01), high-risk disease (P < 0.016), and poor survival (P < 0.001). In contrast, no association between TSP-1 methylation and prognostic factors or survival was observed. CONCLUSIONS: Our results suggest that epigenetic inactivation of RASSF1A may contribute to the clinically aggressive phenotype of high-risk NB.  相似文献   

12.
13.
14.
Neuroblastoma is the most common pediatric solid tumor. Although many allelic imbalances have been described, a bona fide tumor suppressor gene for this disease has not been found yet. In our study, we analyzed 2 genes, PTEN and DMBT1, mapping 10q23.31 and 10q25.3-26.1, respectively, which have been found frequently altered in other kinds of neoplasms. We screened both genes for homozygous deletions in 45 primary neuroblastic tumors and 12 neuroblastoma cell lines. Expression of these genes in cell lines was assessed by RT-PCR analysis. We could detect 2 of 41 (5%) primary tumors harboring PTEN homozygous deletions. Three of 41 (7%) primary tumors and 2 of 12 cell lines presented homozygous losses at the g14 STS on the DMBT1 locus. All cell lines analyzed expressed PTEN, but lack of DMBT1 mRNA expression was detected in 2 of them. We tried to see whether epigenetic mechanisms, such as aberrant promoter hypermethylation, had any role in DMBT1 silencing. The 2 cell lines lacking DMBT1 expression were treated with 5-aza-2'-deoxycytidine; DMBT1 expression was restored in only one of them (MC-IXC). From our work, we can conclude that PTEN and DMBT1 seem to contribute to the development of a small fraction of neuroblastomas, and that promoter hypermethylation might have a role in DMBT1 gene silencing.  相似文献   

15.
16.
17.
Deletions of chromosome 3p are frequent in many types of neoplasia including neural crest tumours such as neuroblastoma (NB) and phaeochromocytoma. Recently we isolated several candidate tumour suppressor genes (TSGs) from a 120 kb critical interval at 3p21.3 defined by overlapping homozygous deletions in lung and breast tumour lines. Although mutation analysis of candidate TSGs in lung and breast cancers revealed only rare mutations, expression of one of the genes (RASSF1A) was absent in the majority of lung tumour cell lines analysed. Subsequently methylation of a CpG island in the promoter region of RASSF1A was demonstrated in a majority of small cell lung carcinomas and to a lesser extent in non-small cell lung carcinomas. To investigate the role of 3p TSGs in neural crest tumours, we (a) analysed phaeochromocytomas for 3p allele loss (n=41) and RASSF1A methylation (n=23) and (b) investigated 67 neuroblastomas for RASSF1A inactivation. 46% of phaeochromocytomas showed 3p allele loss (38.5% at 3p21.3). RASSF1A promoter region hypermethylation was found in 22% (5/23) of sporadic phaeochromocytomas and in 55% (37/67) of neuroblastomas analysed but RASSF1A mutations were not identified. In two neuroblastoma cell lines, methylation of RASSF1A correlated with loss of RASSF1A expression and RASSF1A expression was restored after treatment with the demethylating agent 5-azacytidine. As frequent methylation of the CASP8 gene has also been reported in neuroblastoma, we investigated whether RASSF1A and CASP8 methylation were independent or related events. CASP8 methylation was detected in 56% of neuroblastomas with RASSF1A methylation and 17% without RASSF1A methylation (P=0.0031). These results indicate that (a) RASSF1A inactivation by hypermethylation is a frequent event in neural crest tumorigenesis, particularly neuroblastoma, and that RASSF1A is a candidate 3p21.3 neuroblastoma TSG and (b) a subset of neuroblastomas may be characterized by a CpG island methylator phenotype.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号