首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《电池》2015,(3)
采用湿法球磨工艺和热处理制备三氧化二铬(Cr2O3)修饰钛酸锂(Li4Ti5O12)材料。Cr2O3修饰后,Li4Ti5O12的XRD图中没有出现杂质峰。Cr2O3修饰可提高Li4Ti5O12在高倍率下的容量保持率和循环性能。Li4Ti5O12-1.5%Cr2O3材料的倍率性能和循环性能最好,以5.0 C在1.0~2.5 V充放电,第500次循环的放电比容量为122.8 m Ah/g,容量保持率为96.2%;纯相Li4Ti5O12分别为48.3 m Ah/g、81.1%。Cr2O3修饰降低了Li4Ti5O12的电荷转移阻抗,提高了材料的电化学活性。  相似文献   

2.
樊勇利  李文升 《电源技术》2011,35(3):319-324
3 Li4Ti5O12改性 3.1 掺杂其它元素对Li4Ti5O12性能的改进 Li4Ti5O12本身是电子绝缘材料,大电流充放电时容量衰减很快,直接影响其高倍率性能.通过异价离子的掺杂,使Ti产生混合电价,提高材料的电子导电能力.为此,应引人自由电子或电子空穴.当掺杂的阳离子价态≥+2,并且是Li+位置掺杂时,就产生自由电子;当引人的阴离子价态<-2,可产生电子空穴.这是两条提高Li4Ti5O12的电子导能力途径.掺杂改性依据是,在Li-Ti-O相图中,改变沿着化学计量比的Li4Ti5O12-LiTi2O4尖晶石连接线上Li:Ti比例,合成出具有Ti4+/3+混合价态的Li-Ti-O氧化物,提高其导电性.  相似文献   

3.
分别采用溶胶凝胶法和高温固相法合成了Fe PO4包覆的Li Mn1.5Ni0.5O4正极材料和Li3.9Na0.1Ti5O12负极材料,并组装了Li Mn1.5Ni0.5O4/Li3.9Na0.1Ti5O12(LMNO/LNTO)全电池,采用充放电测试、循环伏安(CV)和电化学阻抗(EIS)研究了Fe PO4包覆对Li Mn1.5Ni0.5O4/Li4Ti5O12全电池电化学性能的影响。结果表明,Fe PO4的包覆抑制了Li Mn1.5Ni0.5O4高温合成时Mn3+的产生,有利于锂离子的可逆脱嵌。Fe PO4包覆的Li Mn1.5Ni0.5O4/Li3.9Na0.1Ti5O12(FP-LMNO/LNTO)比LMNO/LTO全电池具有更高的放电容量、循环性能、库仑效率和能量密度。FP-LMNO/LNTO全电池更适合作为动力锂离子电池。  相似文献   

4.
锂离子电池/电化学电容器用AC承载Li_4Ti_5O_(12)材料   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法结合高温烧结合成了一种混合储能材料Li4Ti5)12/AC.通过溶胶-凝胶的实验条件优化,并在惰性气氛保护下800℃、16 h烧结得到产物,经扫描电子显微镜法(SEM)、X射线衍射光谱法(XRD)分析得知,产物为纯相尖晶石结构,Li4Ti5O12晶体为纳米级微晶.随着Li4Ti5O12含量的降低,复合材料的大倍率充放电性能有明显提高,3C充放电时,放电比容量可达到160 mAh/g,其充放电机制包含两个过程,其一为活性炭的双电层充放电过程,另一个为LTO的锂离子嵌入/放出过程.  相似文献   

5.
以氧化钇为Y3+的掺杂源,以蔗糖或导电炭黑为碳源,对Li4Ti5O12同时进行离子掺杂和碳掺杂,采用高温固相法合成负极复合材料Li(4-x/3)YxTi(5-2x3)O/12/C(x=0.1).重点考察了Y掺杂、Y和碳协同掺杂,以及不同碳源对该复合材料形貌、粒径和电化学性能的影响.结果表明:使用蔗糖为碳源合成的复合材料Li(4-x/3)YxTi(5-2x/3)O12(x=0.1)体现了相对较好的倍率性能和循环稳定性,在0.15 C、0.40 C、0.70 C、1.40 C和3.30 C下材料首次放电比容量分别为150.4、144.5、144.5、140.8和116.9 mAh/g,3.3 C下循环10次后容量仍保持为116.7 mAh/g.电化学交流阻抗表明,使用蔗糖为碳源合成的复合材料Li(4-x/3)YxTi(5-2x/3)O12的阻抗从纯Li4Ti5O12的912.5Ω降低到227.7 Ω.  相似文献   

6.
分析了钛酸锂(Li4Ti5O12)的晶体结构、嵌锂特性与电化学特性;介绍了目前制备Li4Ti5O12的几种方法,主要是固相法和溶胶-凝胶法;其改性方面的研究不但包括掺杂、包覆,还包括结构的改变.Li4Ti5O12作为零应变材料,具有优良的电化学性能,可用于提高其它电池材料的性能.最后提出了Li4Ti5O12今后的研究方向.  相似文献   

7.
以钛酸正丁酯、碳酸锂和三氧化二钴为原料,采用高能球磨辅助固相法及原位包覆技术合成了负极材料尖晶石型Li4Ti4.95Co0.05O12。通过XRD、SEM、充放电和循环伏安测试等,对材料进行分析。高能球磨辅助固相法及原位包覆技术可阻止Li4Ti5O12颗粒团聚、提升颗粒的分散度;Co3+掺杂不会改变晶体结构,但提高了材料的高倍率性能及循环稳定性。在1.0~3.0 V以2.0 C、5.0 C、10.0 C和20.0 C倍率充放电,Li4Ti4.95Co0.05O12的首次放电比容量分别为146.7 mAh/g、135.5mAh/g、113.5 mAh/g和67.2 mAh/g,经过100次循环,可逆容量基本未衰减。  相似文献   

8.
尖晶石型Li4Ti5O12是一种"零应变"负极材料,它被认为是最具前景的动力锂离子电池负极材料之一。然而Li4Ti5O12较低的电导率限制了它的实际应用。通过对其进行不同价态元素的掺杂改性,以提高Li4Ti5O12材料的高倍率性能和循环性能,并研究了低电位下的电化学行为。研究了高温固相法合成了的Mo6+掺杂Li4Ti5O12的材料,结果表明:Mo6+的掺杂有效地提高了材料的放电比容量,0.1 C时,Li4Ti4.8Mo0.2O12的首次放电比容量高达356.6 mAh/g;Li4Ti4.9Mo0.1O12和Li4Ti4.85Mo0.15O12在6 C下循环100次后的可逆比容量分别为210.8、199.4 mAh/g,在高倍率循环过程中表现出了比Li4Ti5O12高的比容量。但随着掺杂量的增加,循环性能却逐渐降低。  相似文献   

9.
以固相烧结的方法合成锂离子电池负极材料Li4Ti5O12,同时进行了Mg2+离子掺杂和碳包覆共改性以提高Li4Ti5O12的导电性及综合性能,从而实现其大倍率充放电条件下保持高的比容量。采用XRD、SEM和循环伏安等测试手段,考察了金属离子掺杂及复合碳源包覆共改性对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂3%的Mg2+同时加入质量分数为0.5%的无机碳源和10%的有机碳源对材料本身的结构没有影响,明显降低了Li4Ti5O12的电荷转移阻抗,使材料的电导率有了很大的提高。0.2 C倍率条件下首次放电比容量为173 m Ah/g,10 C倍率条件下放电比容量为104m Ah/g。与纯相的Li4Ti5O12相比,改性后的材料倍率性能及其他综合性能都有很大的提高。  相似文献   

10.
采用碳热还原(CTR)法以LiOH.H2O、V2O5和NH4H2PO4为原料合成了具有NASCION结构的锂离子蓄电池正极材料磷酸钒锂Li3V2(PO4)3。系统地研究了合成温度、反应时间和原料配比等因素对样品性能的影响。结果表明以n(Li)∶n(V)∶n(P)=3.05∶2.00∶3.00投入原料在800℃下煅烧24h合成的正极材料在0.1C充、放电制度下,首次充电比容量达到137mAh/g,首次放电比容量137mAh/g,充、放电效率达100%,经过20次循环后,放电容量仍然保留110mAh/g,为初始放电容量的84%。对样品进行了X射线衍射(XRD)分析,结果表明合成的样品Li3V2(PO4)3具有单斜晶体结构。  相似文献   

11.
以Li2CO3和V2O5为原料,采用固相法合成了锂离子电池正极材料Li1 xV3O8。通过TG-DTG分析,确定了合成过程的反应机理。通过XRD和恒流充放电测试,研究了Li1 xV3O8样品的结构及电化学性能。580℃焙烧得到层状结构的Li1 xV3O8产品,电化学性能优于630℃焙烧得到的产品;以C/8充放电,首次放电比容量达到245.1 mAh/g,第30次循环的比容量仍为246.7 mAh/g。  相似文献   

12.
Li[Li_(0.182)Ni_(0.182)Co_(0.091)Mn_(0.545)]O_2的高温性能   总被引:1,自引:1,他引:0  
在60℃下,Li[Li0.182Ni0.182Co0.091Mn0.545]O2正极材料在2.0~4.3 V充放电,比容量从首次循环时的111.0 mAh/g上升到第30次循环时的138.9 mAh/g;而在2.0~4.6 V充放电,比容量从首次循环时的261.0 mAh/g下降到第18次循环时的245.1 mAh/g.在室温下,不管是在2.0~4.3 V还是在2.0~4.6 V充放电,比容量基本不变.这是因为在60℃下充放电时,Li[Li0.182Ni0.182Co0.091Mn0.545]O2中的Mn4+被不断"激活".  相似文献   

13.
以钛酸正丁酯、碳酸锂为原料,采用高能球磨辅助固相法合成了锂离子电池负极材料尖晶石型Li4Ti5O12.探讨了不同煅烧温度对Li4Ti5O12形貌和结构的影响,并通过X射线衍射(XRD)、电子扫描电镜(SEM)、恒电流充放电和循环伏安测试等手段对材料的表面形貌、结构和电化学性能进行表征.结果表明,煅烧温度对Li4Ti5O12的结晶度、微观形貌有显著的影响.经过工艺优化,包覆有TiO2·2 H2O的碳酸锂前驱体经800℃热处理7h后,产物Li4Ti5O12的颗粒尺寸细小且均匀,约在200~500 nm,同时表现出优异的电化学性能.在0.5 C和1C下放电,首次放电比容量分别达到180.3和160.1 mAh/g,经过100次充放电循环后,容量保持率分别为92.2%和98.1%.研究表明高能球磨工艺结合碳酸锂包覆技术可以有效阻止固相法合成粉体过程中的团聚,极大地改善了Li4Ti5O12的循环稳定性.  相似文献   

14.
综述了近年来锂离子电池用Li4Ti5O12负极材料的合成方法的研究现状,重点对高温固相法和溶胶-凝胶法进行了总结和探讨,并对Li4Ti5O12负极材料的发展前景进行了展望.  相似文献   

15.
Li_4Ti_5O_(12)的合成过程分析及性能   总被引:1,自引:1,他引:0  
以高熔点的Li2CO3及低熔点的LiNO3为锂源,采用固相法合成Li4Ti5O12.热重、XRD及SEM实验表明:以Li2CO3为锂源时,合成过程为全固相;以LiNO3为锂源时,反应开始前有熔融LiNO3产生,产物具有更好的结晶性,形貌更接近球形,粒径略大但分布均匀.电化学性能测试表明:以LiNO3为锂源的产物,在0.5 C、1.0 C、2.0 C、5.0 C、8.0 C及10.0 C时的放电比容量分别为147 mAh/g、141 mAh/g、133 mAh/g、106 mAh/g、83 mAh/g和69 mAh/g,较以Li2CO3为锂源的产物分别提高了约5%、7%、12%、14%、16%和11%.  相似文献   

16.
宋翠环 《电池工业》2011,16(6):337-341
用不同的TiO2原料,在相同的实验条件下固相合成了锂二次电池正极材料Li4Ti5O12.电化学测试结果表明,由介孔TiO2原料合成的Li4Ti5O12正极材料表现出更好的电化学性能.在0.2 C倍率放电时,介孔TiO2原料合成的Li4Ti5O12可获得较高的比容量,达162.1 mAh/g,而且通过65个循环后,在2C...  相似文献   

17.
采用浆料涂覆加氧化的方法在Fe-21Cr合金上制备了Cu1.2Mn1.8O4尖晶石涂层.采用XRD、SEM、EDS等分析测试手段.对尖晶石涂层试样在氧化过程中物相、形貌以及成分的变化进行了表征.研究结果表明,在750℃空气中氧化800 h后尖晶石涂层试样涂层底部氧化过程中有(Cr,Fe)2O3氧化层生成.(Cu,Mn)3O4尖晶石涂层不但能有效地阻碍基体中Cr的向外扩散.并且能显著降低长期氧化过程中ASR的增长速率.750℃空气中((Cu,Mn)3O4尖晶石涂层将Fe-21 Cr合金ASR抛物线速率常数从8.28×10-2 mΩ2·cm4.h-1降至1.87×10-2 mΩQ2·cm4·h-1.  相似文献   

18.
采用一种柠檬酸辅助聚合的溶胶-凝胶法制备了掺杂2%(摩尔分数)Al3+的立方相结构的Li7La3Zr2O12固体电解质,同时,采用高温固相法尝试合成不掺杂Al3+的Li7La3Zr2O12作为对比。分析结果表明:热处理温度超过1 000℃时Li7La3Zr2O12易发生分解;而掺杂2%(摩尔分数)Al3+的Li7La3Zr2O12能在900℃时保持稳定立方相结构,在1 000℃下烧结6 h后得到高致密度的烧结体。该法制备的Li7La3Zr2O12样品表现出高离子电导率:298 K时为4.5×10-5 S/cm,523K时达到3.6×10-3 S/cm。Li+迁移活化能大约为25.1 k J/mol。上述结果表明,作为全固态电池电解质,Al3+掺杂的Li7La3Zr2O12有较好的应用前景。  相似文献   

19.
冯祥明  李璐  张建民  杨长春 《电池》2011,41(2):85-87
研究了以Li4Ti5O12为负极材料的18650型锂离子电池的充放电性能.对2025型Li4Ti5O12-Li模拟电池的研究表明,Li4Ti5O12以0.1 C在1.00~2.00V循环,首次放电比容量和充放电效率分别为150 mAh/g和95%.18650型LiFePO4-Li4Ti5O12电池的0.2 C充电平台集...  相似文献   

20.
采用共沉淀法在800℃下煅烧9 h,制备出了LiNi1/3Co1/4Mn1/3M1/12O2(M=Al,Ti).利用XRD、DSC和充放电分析方法对其进行了表征.实验结果表明:LiNi1/3Co1/3Mn1/3O2中Al和Ti的加入,提高了材料LiNi1/3Co1/4Mn1/3M1/12O2(M=Al,Ti)在4.3 V下热分解反应的热稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号