首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nanocarriers capable of circumventing various biological barriers between the site of administration and the therapeutic target hold great potential for cancer treatment. Herein, a redox‐sensitive, hyaluronic acid‐decorated graphene oxide nanosheet (HSG) is developed for tumor cytoplasm‐specific rapid delivery using near‐infrared (NIR) irradiation controlled endo/lysosome disruption and redox‐triggered cytoplasmic drug release. Hyaluronic acid (HA) modification through redox‐sensitive linkages permits HSG a range of advantages over the standard graphene oxide, including high biological stability, enhanced drug‐loading capacity for aromatic molecules, HA receptor‐mediated active tumor targeting, greater NIR absorption and thermal energy translation, and a sharp redox‐dependent response for accelerated cargo release. Results of in vivo and in vitro testing indicate a high loading of doxorubicin (DOX) onto HSG. Selective delivery to HA‐receptor overexpressing tumors is achieved through passive and active targeting with minimized unfavorable interactions with blood components. Cytoplasm‐specific DOX delivery is then achieved through NIR controlled endo/lysosome disruption along with redox‐triggered release of DOX in glutathione rich areas. HSG's specificity is resulted in enhanced cytotoxicity of chemotherapeutics with minimal collateral damage to healthy tissues in a xenograft animal tumor model. HSG is validated the programmed delivery of therapeutic agents in a spatiotemporally controlled manner to overcome multiple biological barriers results in specific and enhanced cancer treatment.  相似文献   

2.
The acquisition of multidrug resistance (MDR) is a major hurdle for the successful chemotherapy of tumors. Herein, a novel hybrid micelle with pH and near‐infrared (NIR) light dual‐responsive property is reported for reversing doxorubicin (DOX) resistance in breast cancer. The hybrid micelles are designed to integrate the pH‐ and NIR light‐responsive property of an amphiphilic diblock polymer and the high DOX loading capacity of a polymeric prodrug into one single nanocomposite. At physiological condition (i.e., pH 7.4), the micelles form compact nanostructure with particle size around 30 nm to facilitate blood circulation and passive tumor targeting. Meanwhile, the micelles are quickly dissociated in weakly acidic environment (i.e., pH ≤ 6.2) to release DOX prodrug. When exposed to NIR laser irradiation, the hybrid micelles can trigger notable tumor penetration and cytosol release of DOX payload by inducing tunable hyperthermia effect. In combination with localized NIR laser irradiation, the hybrid micelles significantly inhibit the growth of DOX‐resistant MCF‐7/ADR breast cancer in an orthotopic tumor bearing mouse model. Taken together, this pH and NIR light‐responsive micelles with hyperthermia‐triggered tumor penetration and cytoplasm drug release can be an effective nanoplatform to combat cancer MDR.  相似文献   

3.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

4.
The cell‐specific targeting drug delivery and controlled release of drug at the cancer cells are still the main challenges for anti‐breast cancer metastasis therapy. Herein, the authors first report a biomimetic drug delivery system composed of doxorubicin (DOX)‐loaded gold nanocages (AuNs) as the inner cores and 4T1 cancer cell membranes (CMVs) as the outer shells (coated surface of DOX‐incorporated AuNs (CDAuNs)). The CDAuNs, perfectly utilizing the natural cancer cell membranes with the homotypic targeting and hyperthermia‐responsive ability to cap the DAuNs with the photothermal property, can realize the selective targeting of the homotypic tumor cells, hyperthermia‐triggered drug release under the near‐infrared laser irradiation, and the combination of chemo/photothermal therapy. The CDAuNs exhibit a stimuli‐release of DOX under the hyperthermia and a high cell‐specific targeting of the 4T1 cells in vitro. Moreover, the excellent combinational therapy with about 98.9% and 98.5% inhibiting rates of the tumor volume and metastatic nodules is observed in the 4T1 orthotopic mammary tumor models. As a result, CDAuNs can be a promising nanodelivery system for the future therapy of breast cancer.  相似文献   

5.
Smart drug delivery systems with on‐demand drug release capability are rather attractive to realize highly specific cancer treatment. Herein, a novel light‐responsive drug delivery platform based on photosensitizer chlorin e6 (Ce6) doped mesoporous silica nanorods (CMSNRs) is developed for on‐demand light‐triggered drug release. In this design, CMSNRs are coated with bovine serum albumin (BSA) via a singlet oxygen (SO)‐sensitive bis‐(alkylthio)alkene (BATA) linker, and then modified with polyethylene glycol (PEG). The obtained CMSNR‐BATA‐BSA‐PEG, namely CMSNR‐B‐PEG, could act as a drug delivery carrier to load with either small drug molecules such as doxorubicin (DOX), or larger macromolecules such as cis‐Pt (IV) pre‐drug conjugated third generation dendrimer (G3‐Pt), both of which are sealed inside the mesoporous structure of nanorods by BSA coating. Upon 660 nm light irradiation with a rather low power density, CMSNRs with intrinsic Ce6 doping would generate SO to cleave BATA linker, inducing detachment of BSA‐PEG from the nanorod surface and thus triggering release of loaded DOX or G3‐Pt. As evidenced by both in vitro and in vivo experiments, such CMSNR‐B‐PEG with either DOX or G3‐Pt loading offers remarkable synergistic therapeutic effects in cancer treatment, owing to the on‐demand release of therapeutics specifically in the tumor under light irradiation.  相似文献   

6.
The synthesis of microcapsules consisting of DNA shells crosslinked by anti‐VEGF (vascular epithelial growth factor) or anti‐ATP (adenosine triphosphate) aptamers and loaded with tetramethylrhodamine‐modified dextran, TMR‐D, and Texas Red‐modified dextran, TR‐D, respectively, as fluorescence labels acting as models for drug loads, is described. The aptamer‐functionalized microcapsules act as stimuli‐responsive carriers for the triggered release of the fluorescent labels in the presence of the overexpressed cancer cell biomarkers VEGF or ATP. The VEGF‐ and ATP‐responsive microcapsules are, also, loaded with the anticancer drug doxorubicin (DOX), in the form of DOX‐functionalized dextran, DOX‐D. The release of DOX‐D from the respective microcapsules proceeds in the presence of VEGF or ATP as triggers. Preliminary cell experiments reveal that the ATP‐responsive DOX‐D‐loaded microcapsules undergo effective endocytosis into MDA‐MB‐231 cancer cells. The ATP‐responsive DOX‐D‐loaded microcapsules incorporated into the MDA‐MB‐231 cancer cells reveal impressive cytotoxicity as compared to normal epithelial MCF‐10A breast cells (50% vs 0% cell death after 24 h, respectively). The cytotoxicity of the ATP‐responsive DOX‐D‐loaded microcapsules toward the cancer cells is attributed to the effective unlocking of the microcapsules by overexpressed ATP, and to the subsequent release of DOX from the dextran backbone under acidic conditions present in cancer cells (pH = 6.2).  相似文献   

7.
Zeolitic imidazolate framework‐8 (ZIF‐8) is an attractive metal organic framework (MOF) in drug delivery. Strong interaction between drugs and ZIF‐8 is essential for high drug loadings through in situ construction of MOFs. However, only limited drugs with unique functional groups (? COOH, ? SO3H, et al.) can interact with ZIF‐8 and be encapsulated satisfactorily so far. Drugs without these functional groups are difficult to be loaded due to the lack of strong interaction. Herein a versatile prodrug strategy is proposed to solve the problems encountered by MOFs. Cytarabine (Ara) is chosen as a model drug since it cannot be loaded in ZIF‐8 satisfactorily by itself. New indocyanine green (IR820) is utilized to bond with Ara for the formation of prodrug (Ara‐IR820) and endows the prodrug with fluorescence imaging‐guided chemo‐photothermal therapy, in which sulfonic groups strengthen the interaction between prodrug and ZIF‐8. This prodrug loaded ZIF‐8 is further functionalized with hyaluronic acid (HA) to result in active‐targeting HA/Ara‐IR820@ZIF‐8 nanoparticles. The in vitro and in vivo results demonstrate its excellent visual cancer therapy with tumor‐targeted and pH‐responsive release behavior. This design offers a new concept to solve the drug loading problem of MOFs, exhibiting a flexible strategy to expand the biomedical applications of MOFs.  相似文献   

8.
Multifunctional nanocarriers based on the up‐conversion luminescent nanoparticles of NaYF4:Yb3+/Er3+ core (UCNPs) and thermo/pH‐coupling sensitive polymer poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(NIPAm‐co‐MAA)) gated mesoporous silica shell are reported for cancer theranostics, including fluorescence imaging, and for controlled drug release for therapy. The as‐synthesized hybrid nanospheres UCNPs@mSiO2‐P(NIPAm‐co‐MAA) show bright green up‐conversion fluorescence under 980 nm laser excitation and the thermo/pH‐sensitive polymer is active as a “valve” to moderate the diffusion of the embedded drugs in‐and‐out of the pore channels of the silica container. The anticancer drug doxorubicin hydrochloride (DOX) can be absorbed into UCNPs@mSiO2‐P(NIPAm‐co‐MAA) nanospheres and the composite drug delivery system (DDS) shows a low level of leakage at low temperature/high pH values but significantly enhanced release at higher temperature/lower pH values, exhibiting an apparent thermo/pH controlled “on‐off” drug release pattern. The as‐prepared UCNPs@mSiO2‐P(NIPAm‐co‐MAA) hybrid nanospheres can be used as bioimaging agents and biomonitors to track the extent of drug release. The reported multifunctional nanocarriers represent a novel and versatile class of platform for simultaneous imaging and stimuli‐responsive controlled drug delivery.  相似文献   

9.
The development of advanced gene/drug codelivery carriers with stimuli‐responsive release manner for complementary cancer therapy is desirable. In this study, novel disulfide‐bridged and doxorubicin (DOX)‐embedded degradable silica nanoparticles (DS‐DOX) with unique self‐destruction features are synthesized by a facile one‐pot method. In order to realize codelivery of genes and drugs, the surface of DS‐DOX nanoparticles is readily functionalized with the assembled polycation (CD‐PGEA), comprising one β‐cyclodextrin core and two ethanolamine‐functionalized poly(glycidyl methacrylate) arms, to achieve DS‐DOX‐PGEA. The redox‐responsive self‐destruction behavior of DS‐DOX imparts DS‐DOX‐PGEA with a better ability to release anticancer drug DOX, while the low‐toxic hydroxyl‐rich CD‐PGEA brushes can efficiently deliver genes for cancer treatment. Very interestingly, the degradation process of DS‐DOX starts from the outside, while the destruction of the degradable silica (DS) nanoparticles without DOX begins from the center of the nanoparticles. The embedded DOX inside the DS‐DOX nanoparticles can significantly influence the structures and facilitate the cellular uptake and the subsequent gene transfection. The as‐developed DS‐DOX‐PGEA nanostructure with coordinating biodegradability, stimuli‐responsiveness, and controlled release manner might be desirable gene/drug codelivery carriers for clinical cancer treatment.  相似文献   

10.
Although pH and reduction responses are widely applied on gene and drug delivery system, the undefined molecule and disconnected response to corresponding transfection barriers still hamper their further application. Here, a multistage‐responsive lipopeptides polycation‐DNA nanoparticles (namely KR‐DC) as gene vector is designed, consisting of three functional modules. It provides the following outstanding “smart” characteristics: i) facile manufacture and ease to adjust ingredients for different conditions, ii) negatively charged surface to remain stable and increase biocompatibility in physiological environment, iii) pH‐triggered cascading charge‐conversion corresponding to tumor extracellular pH and endo/lysosomal pH, iv) the first stage of charge reversal for uptake enhancement at tumor site, v) the second stage of charge conversion for rapid endosomal escape, vi) the third stage of redox degradation aiming at DNA controlled release and nuclear entry, vii) cell‐penetrating peptides mimicking arginine‐rich periphery targeting to membrane penetration capacity improvement, and viii) lipid forming hydrophobic cavity for potential fat‐soluble drug encapsulation. Finally, KR‐DC nanoparticles achieve significantly enhanced in vitro transfection efficiency by almost four orders of magnitude in manual tumor environment with reduced side effects and satisfying gene expression in Hela xenograft tumor model in vivo.  相似文献   

11.
The development of cancer combination therapies, many of which rely on nanoscale theranostic agents, has received increasing attention in recent years. In this work, polyethylene glycol (PEG) modified mesoporous silica (MS) coated single‐walled carbon nanotubes (SWNTs) are fabricated and utilized as a multifunctional platform for imaging guided combination therapy of cancer. A model chemotherapy drug, doxorubicin (DOX), could be loaded into the mesoporous structure of the obtained SWNT@MS‐PEG nano‐carriers with high efficiency. Upon stimulation under near‐infrared (NIR) light, photothermally triggered drug release from DOX loaded SWNT@MS‐PEG is observed inside cells, resulting in a synergistic cancer cell killing effect. As revealed by both photoacoustic (PA) and magnetic resonance (MR) imaging, we further uncover efficient tumor accumulation of SWNT@MS‐PEG/DOX after intravenous injection into mice. In vivo combination therapy using this agent is further demonstrated in a mouse tumor model, achieving a remarkable synergistic anti‐tumor effect superior to that obtained by mono‐therapy. Our work presents a new type of theranostic nano‐platform, which could load therapeutic molecules with high efficiency, be responsive to external NIR stimulation, and at the same time serve as a diagnostic imaging agent.  相似文献   

12.
Versatile strategies are currently being discovered for the fabrication of synthetic polypeptide‐based hybrid hydrogels, which have potential applications in polymer therapeutics and regenerative medicine. Herein, a new concept—the reverse micellar hydrogel—is introduced, and a versatile strategy is provided for fabricating supramolecular polypeptide‐based normal micellar hydrogel and reverse micellar hydrogels from the same polypeptide‐based copolymer via the cooperation of host–guest chemistry and hydrogen‐bonding interactions. The supramolecular hydrogels are thoroughly characterized, and a mechanism for their self‐assembly is proposed. These hydrogels can respond to dual stimuli—temperature and pH—and their mechanical and controlled drug‐release properties can be tuned by the copolymer topology and the polypeptide composition. The reverse micellar hydrogel can load 10% of the anticancer drug doxorubicin hydrochloride (DOX) and sustain DOX release for 45 days, indicating that it could be useful as an injectable drug delivery system.  相似文献   

13.
Cell‐based drug delivery systems are a promising platform for tumor‐targeted therapy due to their high drug‐loading capacities and inherent tumor‐homing abilities. However, the real‐time tracking of these carrier cells and controlled release of the encapsulated drugs are still challenging. Here, ultrasound‐activatable cell bombs are developed by encapsulating doxorubicin (DOX) and phase transformable perfluoropentane (PFP) into hollow mesoporous organosilica nanoparticles (HMONs) to prepare DOX/PFP‐loaded HMONs (DPH), followed by internalization into macrophages (RAW 264.7 cells). The resulting cell bombs (DPH‐RAWs) can maintain viability and actively home to the tumor. Especially, their migration can be tracked in real time using ultrasound due to the vaporization of a small portion of PFP during cell incubation at 37 °C. After accumulation at the tumor site, the further vaporization of remaining PFP can be triggered by a short‐pulsed high intensity focused ultrasound (HIFU) sonication, resulting in the generation of several large microbubbles, which destroys DPH‐RAWs and allows drug release out of these cells. The DPH‐RAWs combined with short‐pulsed HIFU sonication significantly inhibit tumor growth and prolong survival of tumor‐bearing mice. In conclusion, this study provides a new approach to cell‐based drug delivery systems for real‐time tracking of their migration and targeted cancer treatment.  相似文献   

14.
The assembly of low‐fouling polymer capsules with redox‐responsive behavior and intracellular degradability is reported. Thiol‐containing poly(2‐ethyl‐2‐oxazoline) (PEtOxMASH) brushes are synthesized by atom transfer radical polymerization (ATRP) of oligo(2‐ethyl‐2‐oxazoline)methacrylate and glycidyl methacrylate (GMA) and subsequent ring‐opening reaction of the GMA. Sequential deposition of PEtOxMASH/poly(methacrylic acid) (PMA) multilayers onto silica (SiO2) particle templates and crosslinking through disulfide formation yield stable capsules after the removal of the SiO2 templates by buffered hydrofluoric acid (HF). The redox‐responsive nature of the disulfide crosslinking groups enables the degradation of these capsules under simulated intracellular conditions at pH 5.9 and 5 mm glutathione (GSH). Furthermore, capsule degradation is observed after incubation with dendritic (JAWS II) cells. Even at high capsule‐to‐cell ratios, PEtOxMASH capsules show only negligible cytotoxicity. Quartz crystal microgravimetry (QCM) studies, using 100% human serum, reveal that films prepared from PEtOxMASH exhibit low‐fouling properties. The degradation and low‐fouling properties are promising for application of PEtOxMASH films/capsules for the delivery and triggered release of therapeutics.  相似文献   

15.
A series of synthetic polymer bioconjugate hybrid materials consisting of poly(2‐hydroxyethyl methacrylate) (p(HEMA)) and poly(l‐ histidine) (p(His)) are synthesized by combining atom transfer radical polymerization of HEMA with ring opening polymerization of benzyl‐N‐carboxy‐L ‐histidine anhydride. The resulting biocompatible and membranolytic p(HEMA)25b‐p(His)n (n = 15, 25, 35, and 45) polymers are investigated for their use as pH‐sensitive drug‐carrier for tumor targeting. Doxorubicin (Dox) is encapsulated in nanosized micelles fabricated by a self‐assembly process and delivered under different pH conditions. Micelle size is characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) observations. Dox release is investigated according to pH, demonstrating the release is sensitive to pH. Antitumor activity of the released Dox is assessed using the HCT 116 human colon carcinoma cell line. Dox released from the p(HEMA)‐b‐p(His) micelles remains biologically active and has the dose‐dependent capability to kill cancer cells at acidic pH. The p(HEMA)‐b‐p(His) hybrid materials are capable of self‐assembling into nanomicelles and effectively encapsulating the chemotherapeutic agent Dox, which allows them to serve as suitable carriers of drug molecules for tumor targeting.  相似文献   

16.
Multifunctional mesoporous silica nanoparticles are developed in order to deliver anticancer drugs to specific cancer cells in a targeted and controlled manner. The nanoparticle surface is functionalized with amino‐β‐cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. Poly(ethylene glycol) polymers, functionalized with an adamantane unit at one end and a folate unit at the other end, are immobilized onto the nanoparticle surface through strong β‐cyclodextrin/adamantane complexation. The non‐cytotoxic nanoparticles containing the folate targeting units are efficiently trapped by folate‐receptor‐rich HeLa cancer cells through receptormmediated endocytosis, while folate‐receptor‐poor human embryonic kidney 293 normal cells show much lower endocytosis towards nanoparticles under the same conditions. The nanoparticles endocytosed by the cancer cells can release loaded doxorubicin into the cells triggered by acidic endosomal pH. After the nanoparticles escape from the endosome and enter into the cytoplasm of cancer cells, the high concentration of glutathione in the cytoplasm can lead to the removal of the β‐cyclodextrin capping rings by cleaving the pre‐installed disulfide bonds, further promoting the release of doxorubicin from the drug carriers. The high drug‐delivery efficacy of the multifunctional nanoparticles is attributed to the co‐operative effects of folate‐mediated targeting and stimuli‐triggered drug release. The present delivery system capable of delivering drugs in a targeted and controlled manner provides a novel platform for the next generation of therapeutics.  相似文献   

17.
Single wall carbon nanotube (SWNT) based thermo‐sensitive hydrogel (SWNT‐GEL) is reported, which provides an injectable drug delivery system as well as a medium for photothermal transduction. SWNT‐hydrogel alone appears to be nontoxic on gastric cancer cells (BGC‐823 cell line) but leads to cell death with NIR radiation through a hyperthermia proapoptosis mechanism. By incorporating hyperthermia therapy and controlled in situ doxorubicin (DOX) release, DOX‐loaded SWNT‐hydrogel with NIR radiation proves higher tumor suppression rate on mice xenograft gastric tumor models compared to free DOX without detectable organ toxicity. The developed system demonstrates improved efficacy of chemotherapeutic drugs which overcomes systemic adverse reactions and presents immense potential for gastric cancer treatment.  相似文献   

18.
To achieve on‐demand drug release, mesoporous silica nanocarriers as antitumor platforms generally need to be gated with stimuli‐responsive capping agents. Herein, a “smart” mesoporous nanocarrier that is gated by the drug itself through a pH‐sensitive dynamic benzoic–imine covalent bond is demonstrated. The new system, which tactfully bypasses the use of auxiliary capping agents, could also exhibit desirable drug release at tumor tissues/cells and enhanced tumor inhibition. Moreover, a facile dynamic PEGylation via benzoic–imine bond further endows the drug‐self‐gated nanocarrier with tumor extracellular pH‐triggered cell uptake and improves therapeutic efficiency in vivo. In short, the paradigm shift in capping agents here will simplify mesoporous nanomaterials as intelligent drug carriers for cancer therapy. Moreover, the self‐gated strategy in this work also shows general potential for self‐controlled delivery of natural biomolecules, for example, DNA/RNA, peptides, and proteins, due to their intrinsic amino groups.  相似文献   

19.
Over the past few years, silica‐based nanotheranostics have demonstrated their great potential for nano/biomedical applications. However, the uncontrollable and difficult degradability of their pure silica framework and long‐time in vivo retention still cause severe and unpredictable toxicity risks. Therefore, it is highly desirable to design and synthesize materials with safer framework structures and compositions. To this aim, the introduction of disulfide bonds into the silica framework can not only maintain high stability in physiological conditions, but also achieve a stimuli‐responsive biodegradation triggered by intracellular reducing microenvironment in living cells, especially in cancer cells. Once nanotheranostics with disulfide (i.e., thioether)‐bridged silsesquioxane framework are taken up by tumor cells via passive or active targeting, the disulfide bonds in the hybrid silica matrix can be cleaved by a high concentration of intracellular glutathione, enabling redox‐triggered biodegradation of the nanosystems for both concomitant release of the loaded therapeutic cargo and in vivo clearance. It is envisioned that such hybrid materials comprised of disulfide‐bridged silsesquioxane frameworks can become promising responsive and biodegradable nanotheranostics. This review summarizes the recent advances in the synthesis of hybrid organosilicas with disulfide‐bridged silsesquioxane frameworks, and discuss their redox‐triggered biodegradation behaviors combined with their biocompatibility and nanobiomedical applications.  相似文献   

20.
Nanocarriers for chemo‐photothermal therapy suffer from insufficient retention at the tumor site and poor penetration into tumor parenchyma. A smart drug‐dye‐based micelle is designed by making the best of the structural features of small‐molecule drugs. P‐DOX is synthesized by conjugating doxorubicin (DOX) with poly(4‐formylphenyl methacrylate‐co‐2‐(diethylamino) ethyl methacrylate)‐b‐polyoligoethyleneglycol methacrylate (P(FPMA‐co‐DEA)‐b‐POEGMA) via imine linkage. Through the π–π stacking interaction, IR780, a near‐infrared fluorescence dye as well as a photothermal agent, is integrated into the micelles (IR780‐PDMs) with the P‐DOX. The IR780‐PDMs show remarkably long blood circulation (t1/2β = 22.6 h). As a result, a progressive tumor accumulation and retention are presented, which is significant to the sequential drug release. Moreover, when entering into a moderate acidic tumor microenvironment, IR780‐PDMs can dissociate into small‐size conjugates and IR780, which obviously increases the penetration depth of drugs, and then improves the lethality to deep‐seated tumor cells. Owing to the high delivery efficiency and superior chemo‐photothermal therapeutic efficacy of IR780‐PDMs, 97.6% tumor growth in the A549 tumor‐bearing mice is suppressed with a low dose of intravenous injection (DOX, 1.5 mg kg?1; IR780, 0.8 mg kg?1). This work presents a brand‐new strategy for long‐acting intensive cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号