首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了低噪声放大器的设计方法,介绍了一种用网络匹配法和Asoft公司的Designer软件包并通过晶体管模型来设计低噪声放大器的具体方法。该方法设计的低噪声放大器带宽为1.5GHz,增益为23.2dB且在带宽内性能十分稳定。  相似文献   

2.
通过一个符合性能指标的,用于射频接收系统的CMOS低噪声放大性能的设计,讨论了深亚微米MOSFET的噪声情况,并在满足增旋和功耗的前提下,对低噪声放大噪声性能进行分析和优化,该LNA工作在2.5GHz电源电压,直流功耗为25mW,能够提供19dB的增益(S21),而噪声系数仅为2.5dB,同时输入匹配良好,S11为-45dB,整个电路只采用了一个片外电感使电路保持谐振,此设计结果证明CMOS工艺在射频集成电路设计领域具有可观的潜力。  相似文献   

3.
郭芳  张巧威 《半导体技术》2006,31(7):546-548
介绍了C波段低噪声放大器的设计和研制过程,并给出了研制结果.它采用平衡式电路结构来达到宽带、低噪声的性能.该放大器在5~6GHz的性能指标为:小信号功率增益GP≥30dB,增益波动△GP≤0.8dB,输出P-1≥10dBm,噪声系数NF≤1.0dB,输入驻波比≤1.2:1,输出驻波比≤1.2:1.  相似文献   

4.
S波段低噪声放大器的分析与设计   总被引:1,自引:1,他引:0  
介绍了S波段低噪声放大器(LNA)的设计原理和流程。对影响电路稳定性和噪声性能的、易被忽视的因素进行了详细分析。文中重点分析实际电路可能产生的非连续性、寄生参数效应等因素对电路各个性能指标的影响,并针对这些因素进行了软件仿真计算,最后给出了放大器的仿真结果和最终的微带电路。放大器设计为两极结构,采用GaAsFET器件和双电源电路设计形式,达到了预定的技术指标,工作带宽2.0~4.0GHz,增益G〉22dB,噪声系数NF〈0.7dB。  相似文献   

5.
文章主要介绍应用于集群接收机系统的350MHz~470MHz低噪声放大器,采用0.6μm CMOS工艺。探讨了优化低噪声放大器的噪声系数、增益与线性度的设计方法,同时对宽带输入输出匹配进行了分析。这种宽带低噪声放大器的工作带宽350MHz~470MHz,噪声系数小于3dB,增益为24dB,增益平坦度为±1dB,输入1dB压缩点大于-15dBm。  相似文献   

6.
给出了采用2μm双极工艺实现对1GHz低噪声放大器进行设计的具体方案。并用Ansoft公司的Designer软件进行了设计仿真,利用该方案设计的放大电路十分简单,可满足一定增益(8 dB)且其起伏度小于0.5dB.同时,该放大器的噪声也很低.在1GHz时.其带宽在100MHz内的噪声小于0.75dB。  相似文献   

7.
随着特征尺寸的不断减小,MOS器件已经能够在900MHz-2.5GHz这个频段工作。本文介绍了一个采用0.5μm CMOS工艺实现的用于GPS接收机的单片低噪声放大器,在信号频率为1.575GHz时,信号放大增益为19dB,噪声系数(NF)为6dB,功耗为12mW。  相似文献   

8.
本文首先介绍了低噪声放大器的设计方法以及采用源极串联负反馈提高晶体管稳定性的原理,然后使用该方法设计了一个L波段低噪声放大器。仿真结果表明该放大器的噪声系数小于1dB,增益大于30dB。  相似文献   

9.
赵云 《无线电工程》2004,34(12):61-63
文章阐述了低噪声放大器的一部分主要技术指标,通过对电路设计中应该注意的诸多要点分析了此类高频微带电路的复杂结构和形式,介绍了利用微波工作室软件,对GaAs场效应管S参数中增益和噪声系数等参数进行了分析并设计了两级低噪声放大器,并对电路进行模拟和优化,通过电路调试,软件修正,得到最终电路设计,从最终的测试结果可以看出该放大器具有良好的射频性能,已经达到了预定的技术指标。  相似文献   

10.
论述了在射频电路仿真软件ADS中实现低噪声放大器的整个设计过程,包括低噪声放大器的晶体管的选取、输入输出匹配网络设计以及实现形式等.结合版图与系统结构框图,论述该设计的微调小岛与扇形开路支节等结构应用,同时指出结构尺寸设计的理论依据.最终以图形方式给出满足指标要求的设计结果.  相似文献   

11.
采用UMC 0.18 μm 标准CMOS工艺设计了一款433 MHz ASK接收机中的LNA电路,采用差分带源极负反馈的共源共栅结构,实现单输入双输出,与混频器级联时,避免了使用外接平衡转换器.测试结果表明,该放大器的噪声系数为1.65 dB,增益则达到了18.2 dB,因此将很大程度上提高了整个接收机的噪声性能.同时输入输出匹配分别达到了-28 dB和-24 dB,IIP3也达到了-9.8 dBm,在1.8 V 的电源电压下,功耗为6.5 mW.芯片的尺寸为0.6 mm×0.9 mm.  相似文献   

12.
如何快速又精确地输出低噪声放大器的测试值并使测试值符合测试规范是研究重点。基于多个测试仪器对低噪声放大器的特性参数进行测试开发。矢量网络分析仪完成S参数的测试,噪声测试仪完成噪声系数测试,信号源与频谱仪配合完成三阶交调交叉点测试,信号源与功率计配合完成1 d B增益压缩点测试。通过GPIB或TCP/IP实现仪器通信,使用计算机编程对整个流程实现自动控制,最后将测试结果返回计算机并显示,测试结果符合规范。实验证明,在实际应用中该方法快速精确并具有很好的通用性,可拓展到其他芯片的测试。  相似文献   

13.
采用场效应晶体管ATF541M4设计了一个工作于LTE第38频段(2570MHz-2620MHz)的低噪声放大器。首先介绍设计低噪声放大器的理论基础,其次在ADS中进行仿真,最后将仿真结果与实测结果进行对比,得出结论。实测结果表明,该低噪声放大器在指定频率范围内噪声系数小于ldB,增益大于13dB,带内波动小于±0.25dB。  相似文献   

14.
一凡 《微电子技术》2003,31(3):61-61
SPACEKLABS研制成这种最新的低噪声放大器在毫米波段 ,33~ 5 0GHz(WR - 2 2 )和 4 0~ 6 0GHz(WR - 19)能够提供全波段的性能。在此频段风 ,典型增益为 18~ 2 0dB ,最小噪声系数为 3dB。在 +8~ +11VDC时 ,DC为 5 0mA。全波段毫米波低噪声放大器@一凡  相似文献   

15.
文章介绍了一种增益为30 dB的低噪声无线传输系统低噪声放大器设计方法。根据设计指标,应用安捷伦ADS仿真软件对低噪声放大器的参数进行仿真分析,然后进行放大器输入输出阻抗匹配,在优化放大器的增益和噪声系数后,完成电路设计,同时文章还给出PCB板的设计结果。测试表明,该法设计的低噪声放大器完全达到设计指标。  相似文献   

16.
本文主要介绍了利用ADS2004A软件设计低噪声放大器的设计过程,并对设计和调试进行了详细的总结。对仿真和测试结果进行了比较,分析误差存在的几点因素,以便今后工作的改善和提高。  相似文献   

17.
X波段宽带单片低噪声放大器   总被引:12,自引:1,他引:12  
从获取放大器的等噪声系数圆最大半径的角度来进行电路设计,设计了工作于X波段9~14GHz的宽带低噪声单片放大器,采用法国OMMIC公司的0.2μmGaAsPHEMT工艺(fT=60GHz)研制了芯片。在片测试结果为在9~14GHz,噪声系数<2.5dB,最小噪声系数在10.4GHz为2.0dB,功率增益在所需频段9~14GHz大于21dB,输入回波损耗<-10dB,输出回波损耗<-6dB。在11.5GHz,输出1dB压缩点功率为19dBm。  相似文献   

18.
采用ADS软件设计并仿真了一种应用于WiMax2标准的低噪声放大器。该低噪声放大器基于TSMC 0.13μmCMOS工艺,工作带宽为2.3 GHz~2.7GHz。在电路设计中采用噪声抵消技术降低CMOS管的电流噪声。使用共栅极结构进行输入匹配,使用电容进行输出匹配。偏置电路采用电流镜原理。使用ADS2006软件进行设计、优化和仿真。仿真结果显示,在2.3 GHz~2.7GHz带宽内,放大器的电源电压在1.2V时,噪声系数低于1.96dB,增益大于21.8dB,整个电路功耗为9mW。  相似文献   

19.
尤志刚  邓立科  杨小军  林先其 《通信技术》2011,44(2):149-150,153
介绍了宽带放大器的设计方法和负反馈技术。选用增益高、噪声小的高电子迁移率晶体管(HEMT)ATF54143,利用负反馈和宽带匹配技术,设计制作了一个高增益低噪声放大器,并借助于安捷伦公司的微波电路仿真软件ADS进行仿真和优化。测试表明,在50-300 MHz的频率范围内,低噪声放大器的增益大于22 dB,平坦度小于±0.3 dB,噪声系数小于1.25,输入驻波小于1.4,输出驻波小于1.3。  相似文献   

20.
利用ADS软件设计X频段低噪声放大器   总被引:3,自引:0,他引:3  
首先简要介绍微波低噪声放大器的设计理论和方法,然后介绍使用Agilent公司的微波电路CAD软件ADS进行仿真和优化设计一个X频段的低噪声放大器的方法和过程。对制成品的实际测试和调试表明,此放大器达到了预定的技术指标,性能良好。其工作频段为8.6~9.5 GHz,噪声系数≤1.8 dB,增益为23 dB,带内平坦度≤±0.5 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号