共查询到18条相似文献,搜索用时 62 毫秒
1.
基于支持向量机的凝汽器故障诊断研究 总被引:1,自引:0,他引:1
分析了凝汽器工作过程及故障机理,建立了凝汽器典型故障集、征兆集及典型故障特征向量集合.建立了基于支持向量机的故障诊断模型,用实例计算证明其有效性.同时和神经网络方法对比后发现:在小样本情况下,采用支持向量机方法的计算结果比神经网络更优越,推广能力更强,而且效率高于神经网络.本方法针对故障诊断样本少的特点,为建立智能化的凝汽设备状态监控和故障诊断提供了一种新的途径,具有广泛的实用价值. 相似文献
2.
3.
4.
排气阀是柴油机的重要部件之一,其故障诊断一直受到研究者的关注,传统的学习机器在小样本学习时不具有良好的泛化能力,其现场效果与实验室精度差距较大。建立在统计学习理论基础之上的支持向量机具有和样本数相适应的最优泛化能力。利用支持向量机适合处理高维数据以及具有良好泛化能力的特点,建立了排气阀故障诊断模型,将排气阀振动信号经过小波包分解后提取的特征指标在小样本时进行支持向量机学习,通过不同核函数的支持向量机和其它智能方法准确率的比较证明:支持向量机较其它智能方法有较大的优越性;准确率对核函数有一定的敏感性;在常用的3种核函数中,线性核的诊断准确率达到了100%,是柴油机排气阀智能故障诊断支持向量机的最佳核函数。 相似文献
5.
基于粗糙集与支持向量机的发动机故障诊断研究 总被引:5,自引:0,他引:5
在提取发动机气门机构故障特征的基础上,提出了采用粗糙集和支持向量机相结合的故障诊断方法。首先,基于粗糙集理论对故障诊断决策表进行属性约简,然后在最优决策属性的基础上使用支持向量机分类器对故障进行分类。实际诊断结果验证了采用粗糙集与支持向量机相结合的方法对故障进行诊断的可行性与有效性。 相似文献
6.
7.
齿轮箱存在故障时,其振动信号往往表现出非平稳特性,并且故障特征信息往往淹没在强大的背景噪声中,难以实现有效诊断.提出了采用基于EMD方法的特征能量值提取法及支持向量机的智能模式诊断方法,并将二者结合运用于齿轮箱的故障诊断,实现了齿轮箱故障的智能识别与诊断.实验结果证明了EMD方法与支持向量机相结合用于齿轮箱故障诊断的正... 相似文献
8.
以MATLAB为开发平台构建了一套汽轮机振动故障诊断系统.该系统以支持向量机算法为核心,并通过建立支持向量机多分类模型对汽轮机常见故障进行了精确的诊断. 相似文献
9.
10.
11.
12.
机组的振动水平是表征电厂稳定安全最重要的标志之一.本文利用支持向量机的智能方法对机组的轴系故障进行诊断,在小样本集上取得了100%的分类精度.在此基础上,还引入部分噪声数据,统计其分类性能,展示了支持向量机的容错能力.最后分析了支持向量机方法在轴系振动故障振动的优势和缺陷,引入模糊输出支持向量机进行了改进,给设备维修提供了更多的参考信息. 相似文献
13.
针对滚动轴承振动信号易受环境噪声干扰及浅层学习模型依赖人工经验难以准确提取故障特征的难题,提出了一种优化自适应白噪声平均总体经验模态分解(OCEEMDAN)与卷积神经网络(CNN)联合的故障诊断方法。采用自适应白噪声平均总体经验模态分解(CEEMDAN)算法对原始信号进行分解,分形维数筛选最佳分量,奇异值(SVD)降噪优化,输入CNN实现故障诊断,分别与EMD-CNN、EEMD-CNN及CEEMDAN-CNN方法进行对比。结果表明:该方法在不同工况下均具有较高的识别率,突显了良好的鲁棒性与泛化性。 相似文献
14.
15.
以滚动轴承作为研究对象,设计了深度可分离模块、残差骨干网络、金字塔池化结构和路径聚合结构等特征融合单元,建立了深度特征融合的卷积神经网络(Deep Feature Convolutional Neural Network,DFCNN),分析了随机梯度下降法对网络参数优化的有效性及数据集传递次数与模型精度的关系,开展了不同样本容量和不同噪声环境下的故障试验。结果表明:提出的DFCNN模型可以有效识别滚动轴承损伤部位以及损伤程度,诊断准确率大于99.5%;该模型对样本容量要求低、抗噪能力出色,当信噪比大于-4时诊断准确率大于98.86%。 相似文献
16.
基于小波包能量分析及改进支持向量机的风机机械故障诊断 总被引:1,自引:2,他引:1
为了准确诊断风机的机械故障,提出了一种基于小波包能量特征和改进支持向量机的诊断方法.在某4-73No.8D风机实验台上对13种不同运行状态下的振动信号进行采集,利用小波包对振动信号进行消噪、分解与重构,提取其小波包能量特征,得到了各运行状态下风机多测点信息融合的小波包能量特征向量,并利用改进支持向量机对特征向量样本集进行训练与测试,实现了风机机械故障的分类诊断.结果表明:该诊断方法能够有效地诊断风机机械故障的类别、严重程度和发生部位,且诊断准确率高、测试时间短,适用于在线机械诊断. 相似文献
17.