首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
针对寒区桥面铺装这一特殊应用领域要求,对不同掺入量的聚丙烯纤维混凝土进行冻融循环及冻融-氯盐共同作用下耐久性试验,研究低掺聚丙烯纤维对寒区桥面铺装混凝土性能的影响.试验结果表明:低掺聚丙烯纤维桥面铺装混凝土可提高抗冻性能和抵御氯盐侵蚀能力,防止钢筋锈蚀,增强混凝土耐久性.  相似文献   

2.
试验研究了聚丙烯纤维对桥面铺装轻骨料混凝土工作性能和强度的影响,探讨了对轻骨料预湿、掺入聚丙烯纤维及钢纤维与开裂时间、开裂面积、裂缝数量的关系.结果表明:聚丙烯纤维的掺入降低了轻骨料混凝土的流动性,当聚丙烯纤维掺量为1.2 kg/m3时,混凝土初始坍落度和扩展度仅为未掺聚丙烯纤维混凝土的69%和64%,当聚丙烯纤维掺量为0.6 kg/m3时,混凝土分层度较小;聚丙烯纤维在轻骨料混凝土中存在一个最佳掺量,当聚丙烯掺量为0.6 kg/m3时,混凝土28 d抗压强度变化不大,28 d抗折强度有一定提高.抗裂试验表明:对轻集料进行预湿处理和掺入纤维可以阻止和延缓混凝土早期塑性收缩产生的裂缝,提高混凝土的早期抗裂性能.  相似文献   

3.
《焦作工学院学报》2013,(2):230-234
为提高渠道衬砌混凝土的耐久性,提高输水效率,延长渠道寿命,通过试验对比研究了不同掺量下低掺量纤维素纤维混凝土以及聚丙烯纤维混凝土的早期抗裂性能、抗渗性能和抗冻性能.试验结果表明,低掺量纤维素纤维对混凝土的工作性和力学性能影响不大,相比普通混凝土和聚丙烯纤维混凝土,可以大幅提高混凝土的抗渗、抗裂及抗冻等耐久性能,适合应用于薄板大面积的渠道混凝土衬砌工程.  相似文献   

4.
分别对纤维类与非纤维类混凝土的抗冻性能进行了试验研究,并将其与素陶粒混凝土、仿钢纤维陶粒混凝土、钢纤维陶粒混凝土、聚丙烯陶粒混凝土进行了比较分析,结果表明:聚丙烯纤维混凝土的抗冻性能均远远优于其他各组;钢纤维混凝土的抗冻性能优于素陶粒混凝土;仿钢纤维陶粒混凝土与素陶粒混凝土并没有改善其抗冻性能。  相似文献   

5.
聚丙烯纤维对改善高强混凝土高温作用后劣化性能的研究   总被引:1,自引:0,他引:1  
通过对聚丙烯纤维高强混凝土高温后力学性能的试验研究,探讨了聚丙烯纤维高强混凝土的抗压强度、抗拉强度和抗折强度在不同温度下的变化规律,并与高强混凝土火灾后性能变化规律进行比较,分析了聚丙烯纤维改善高强混凝土高温爆裂现象的机理,还阐述了聚丙烯纤维对高强混凝土受高温作用后力学性能的影响机理.最后,对进一步地研究进行了展望.  相似文献   

6.
微硅粉和聚丙烯纤维对混凝土抗裂性研究   总被引:1,自引:0,他引:1  
为使混凝土具有良好的耐久性,必须先解决混凝土的抗裂性.因此,在混凝土原材料中加入聚丙烯纤维、微硅粉、矿渣来优化混凝土的抗裂性.用试验手段和正交设计来分析不同掺量时聚丙烯纤维、微硅粉以及矿渣对混凝土抗裂性能的影响.试验结果显示:聚丙烯纤维对混凝土的性能影响尤为显著;掺入微硅粉有利于增强混凝土的抗压强度和抗抗劈裂强度;复合...  相似文献   

7.
目的揭示钢纤维和聚丙烯纤维混杂后对高性能混凝土强度和抗裂性能的影响.方法参照国家标准和试验方法,按不同的纤维掺量设计了16组纤维增强高性能混凝土试件,进行了大量抗压强度试验和劈裂抗拉性能试验研究.结果低体积掺量的聚丙烯纤维增强高性能混凝土劈裂抗拉试验破坏为爆裂式破坏;在高性能混凝土中掺加适量的钢纤维和聚丙烯纤维可使抗拉强度提高10%-40%,使拉压比增大到1/18-1/16;劈裂抗拉试验破坏为带有一定延性的破坏;钢纤维体积掺量为0.8%、聚丙烯纤维体积掺量为0.11%时混杂纤维增强高性能混凝土的复合增强效果最好,高性能混凝土拉压比为1/16.结论适量掺加钢纤维和聚丙烯纤维可使高性能混凝土的拉压比增大,提高高性能混凝土的抗裂性能.  相似文献   

8.
作为一种新型隧道防水衬砌材料,聚丙烯纤维混凝土的抗渗研究大多还仅局限于抗渗机理的定性解释上。为进一步揭示其抗渗性能,结合断裂力学原理和细观结构的力学分析,推导出了混凝土内部裂纹处的纤维闭合力及其应力强度因子,提出了纤维对张开型裂纹扩展的阻碍效应解析式,并在此基础上,通过数值计算,对聚丙烯纤维混凝土的抗渗性能给出了合理解释;另一方面,为将其与传统的微膨胀混凝土的抗渗性能进行比较,开展了4组不同类型混凝土的抗渗性能试验,通过比较发现,工程中常用掺量的聚丙烯纤维混凝土的抗渗性能优于微膨胀混凝土,而合理双掺(聚丙烯纤维和微膨胀剂)可使混凝土的抗渗性能达到最佳。  相似文献   

9.
为了研究聚丙烯纤维混凝土抗冻性能,进行了聚丙烯纤维混凝土冻融试验。结果表明,随冻融循环次数的增加,聚丙烯纤维混凝土损伤不断累积,相对动弹模、抗压强度、抗折强度不断下降;掺入一定量聚丙烯纤维,能有效减缓相对动弹模的损失,有效提高抗折强度,但对于抗压强度的影响并不显著。在试验数据的基础上,分析纤维混凝土冻融力学性能衰减规律,建立了冻融循环作用下聚丙烯纤维混凝土抗压强度、抗折强度衰减模型。  相似文献   

10.
为研究聚丙烯纤维对高性能混凝土深梁受弯性能的影响,采用三分点加载方式对不同聚丙烯纤维掺量(掺量分别为0、0.055%、0.11%、0.165%)的混凝土深梁的受弯性能进行对比试验研究,分析聚丙烯纤维对深梁工作性能和破坏形态、混凝土应变、深梁挠度及纵筋应变的影响。研究结果表明:聚丙烯纤维体积掺量为0.11%时可使试件裂后变形能力得到很大改善,其混凝土弯拉应变超过2000με,屈服荷载提高30%~50%,受弯过程具备明显的纤维强化阶段,聚丙烯纤维的强化作用在纵筋屈服后充分发挥,极限受弯承载力提高58%。当聚丙烯纤维掺量为0.055%或0.165%时,对高性能混凝土深梁的受弯性能影响不明显。本文提出了钢筋聚丙烯纤维混凝土深梁的正截面受弯承载力计算公式,计算值与试验值吻合较好。  相似文献   

11.
为研究混杂纤维(钢纤维/聚丙烯纤维)高性能混凝土深梁的斜截面抗裂度,采用正交试验法设计了18组混杂纤维高性能混凝土深梁试件和2组未掺纤维的普通高性能混凝土深梁对比试件.通过静载作用下的受剪试验,探讨了钢纤维的特征参数(类型、体积率、长径比)、聚丙烯纤维体积率、水平分布钢筋配筋率及竖向分布钢筋配筋率等6个因素对高性能混凝土深梁斜截面抗裂度的影响,通过正交试验的直观分析法比较了各个因素对斜截面抗裂度的影响顺序.试验结果表明:掺入适量的混杂纤维(钢纤维/聚丙烯纤维)后,无腹筋高性能混凝土深梁斜截面抗裂度提高幅度可达34.9%,有腹筋高性能混凝土深梁斜截面抗裂度提高幅度可达83.8%.基于现行规范提出了与钢纤维部分增强钢筋混凝土深梁相衔接的混杂纤维(钢纤维/聚丙烯纤维)高性能混凝土深梁斜截面抗裂度的计算公式,可为工程设计提供参考.  相似文献   

12.
为分析不同掺量硅粉和聚丙烯纤维对再生混凝土梁抗裂性能的影响,对5根再生混凝土梁的开裂荷载、极限荷载、应力分布和荷载-挠度曲线进行了ANSYS有限元分析。结果表明:硅粉和聚丙烯纤维的掺入,提高了再生混凝土的强度和整体刚度,使得梁抵抗拉应力的能力提高,抗裂性能增强、延性提高,开裂荷载和极限荷载均增大。当硅粉掺量为8%,聚丙烯纤维掺量为0.9 kg/m3时,试件的开裂荷载和极限荷载达到最大值,分别为23.66 kN和128.5kN,较SF0P0均提高20%以上。  相似文献   

13.
为研究钢纤维和聚丙烯纤维对高性能混凝土(HPC)深梁受弯性能的影响,对17根含有不同钢纤维(体积掺量≤1%)和聚丙烯纤维(体积掺量≤0.2%)以及不同纵筋配筋率的HPC简支深梁进行4点受弯性能试验.结果显示:单一纤维或混杂纤维增强HPC深梁的初裂荷载提高了10%~40%;混杂纤维增强HPC适筋深梁的纵筋屈服荷载提高50%~150%,极限受弯承载力提高1~2倍,但无筋的混杂纤维HPC深梁承载力很小,破坏为剪切脆性破坏.试验结果表明:混杂纤维可以极大提高HPC深梁的受弯承载力,但混杂纤维的作用不能代替纵向钢筋的作用;可采用复合材料强度叠加原理及剩余弯曲强度理论来探讨混杂纤维增强HPC深梁的极限受弯承载力计算公式.  相似文献   

14.
采用正交设计法对18组混杂纤维高性能混凝土(HPC)深梁和2组普通高性能混凝土深梁进行受剪试验,通过定义剪切延性指标对深梁的剪切延性进行定量分析,利用直观分析法比较了钢纤维外形、钢纤维体积率、钢纤维长径比、聚丙烯纤维体积率、水平分布钢筋配筋率、竖向分布钢筋配筋率等因素对深梁剪切延性的影响。结果表明,钢纤维体积率对深梁剪切延性影响最大,超过了水平分布钢筋和竖向分布钢筋的作用,钢纤维外形的影响最小。混杂纤维的掺入显著提高了深梁的剪切延性,最大提高达40.7%,但仍达不到延性破坏的要求,不足以从破坏形态上根本改变深梁剪切破坏时的脆性。运用有限元软件ABAQUS对深梁受剪行为进行全过程分析,数值分析结果与试验结果吻合良好。  相似文献   

15.
The strength and deformation characteristics of polypropylene fiber reinforced concrete ( PFRC) beams were investigated by four-point bending procedures in this paper. Two kinds of polypropylene fibers with different fiber contents (0.2% , 0.5% , 1.0% and 1.5% ) by volume were used in, the beam, which measured 100 × 100 mm with a span of 300 mm. It was found that the strength of the reinforced concrete beams was significantly decreased, whereas the flexural toughness was improved, compared to those unreinforced concrete beams. Geometry properties and volume contents of polypropylene fiber were considered to be important factors for improving the flexural toughness. Moreover, the composite mechanism between polypropylene fiber and concrete was analyzed and discussed.  相似文献   

16.
聚丙烯纤维混凝土在路面工程中的应用研究   总被引:6,自引:0,他引:6  
通过分析聚丙烯纤维对混凝土的增强作用 ,说明在混凝土中掺加适量的聚丙烯纤维能有效地提高混凝土材料的抗裂、抗冲击、抗冻性能 ,改善混凝土的抗疲劳特性 .文中还介绍了聚丙烯纤维混凝土在路面工程中的应用实例及设计施工方法  相似文献   

17.
根据薄壁结构混凝土的特点,利用中热硅酸盐水泥优化设计出了C50抗渗防裂混凝土配合比。试验结果表明:聚丙烯纤维、钢纤维通过单掺或混掺配制的混凝土28d抗压强度均达到56MPa,抗渗等级P12,满足混凝土的抗渗防裂要求;且单掺聚丙烯的纤维混凝土表现出更优异的抗渗透能力和抗裂性能。SEM微观结构显示,掺膨胀剂混凝土中的水泥石结构均匀密实,产生的钙矾石水化产物丰富,对水泥石收缩具有明显补偿作用,提高了薄壁结构混凝土的抗渗防裂能力。  相似文献   

18.
选取强度等级CF40和CF50混凝土,在混杂纤维混凝土配合比三元叠加法试验基础上确定配合比:在钢纤维体积分数固定为1%时,聚丙烯纤维掺量在0.3~1.5 kg/m3内按级差0.3 kg/m3取5个水平;在聚丙烯纤维掺量为0.9 kg/m3时,钢纤维体积分数在0.5%~2.0%内按级差0.5%取4个水平,研究纤维的不同掺量对混凝土早龄期抗裂性能的影响以及试件裂缝形态的变化.结果表明,钢-聚丙烯纤维混杂具有耦合提高混凝土早龄期抗裂性能的作用,早龄期抗裂性能随纤维掺量的增加而提高;钢纤维体积分数和聚丙烯纤维掺量存在合理有效值.纤维混杂可以协同阻裂和限裂,使混凝土裂缝由宽、长形态调整为细、短形态.  相似文献   

19.
采用正交试验法设计钢聚丙烯混杂纤维高性能混凝土(简称 H PC )深梁试件,通过静力试验研究混杂纤维H PC深梁受剪承载力计算方法。正交试验中考虑的因素主要有钢纤维特征参数(类型、体积率、长径比)、聚丙烯纤维体积率、水平及竖向分布钢筋配筋率等。结果表明:混杂纤维能改变无腹筋H PC深梁的受剪破坏形态;混杂纤维的掺入使得 H PC深梁的剪切初裂强度和抗剪极限强度明显提高,其平均提高幅度分别为45.2%和25.6%。将塑性理论应用于混杂纤维 H PC深梁受剪承载力计算得到了很好的结果,分析表明水平及竖向分布钢筋配筋率的大小对混杂纤维H PC深梁抗剪强度的影响不显著,但水平分布钢筋的作用大于竖向分布钢筋。分析了混杂纤维的增强机理,提出了基于“拉杆拱”模型和劈裂破坏计算模式的混杂纤维 H PC深梁受剪承载力计算式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号