首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
Ti─17合金高温变形机理研究EI   总被引:9,自引:1,他引:8  
用热模拟压缩试验研究了Ti-17合金高温变形特点,通过金相组织和TEM观察发现,β区变形是以扩散回复型变形机制占主导地位;高应变速率下只发生动态回复;低应变速率下发生连续再结晶。(α+β)区变形是界面滑移,高应变速率下易发生动态再结晶。试验还确定了变形激活能Q和应变速率敏感因子m值,β和(α+β)区中分别为161kJ/mol、437kJ/mol和0.32、0.25。  相似文献   

2.
Ti-17合金的热压缩变形行为研究   总被引:2,自引:0,他引:2  
通过热模拟压缩试验,测试了Ti-17合金在温度T=805~945℃,应变速率ε=10(-3)~80s(-1)、变形程度ε=50%范围内的真应力-应变曲线,研究了不同温度、不同应变速率下的流动应力及组织变化规律。发现,在(α+β)两相区降低温度或提高应变速率,流动应力σ变化较大,动态再结晶易于进行;在β区通常只发生动态回复,流动应力σ随温度和应变速率变化较小,高温、低应变时发生连续再结晶。试验还用Zener-Hollomon因子确定了该台金发生连续再结晶的临界因子Zc的数值,logZC=41.2。  相似文献   

3.
通过Gleeble-3800热压缩模拟试验机对TB17钛合金β相区进行热压缩实验,研究该合金β相区的动态再结晶行为及转变机理。结果表明:TB17钛合金在β相区变形时会发生动态回复(DRV)与动态再结晶(DRX)。不同应变速率下存在两种动态再结晶形核位置,低应变速率下主要在晶粒内部形核,高应变速率下主要在晶界附近形核。通过EBSD和TEM分析可知,在低应变速率下发生连续动态再结晶(CDRX),其发生的主要形式为亚晶合并转动。高应变速率下发生不连续动态再结晶(DDRX),发生的主要形式为晶界剪切伴随着亚晶转动。尽管两种动态再结晶的转变方式不同,其本质都是通过位错的增殖、滑移和胞状结构演化形成新的动态再结晶晶粒。  相似文献   

4.
Ti-10V-2Fe-3Al合金热变形的研究   总被引:4,自引:0,他引:4  
利用Gleeble3500热模拟试验机对Ti-10V-2Fe-3Al合金两种状态在不同变形温度及不同变形速率条件下的热变形行为进行了研究。结果表明,不同初始状态对合金的应力应变行为影响较大,经过固溶处理后在低于相变点变形时合金的流变应力比较高,但在高于相变点变形时流变应力没有明显差异;合金的应力指数与合金的状态和应变速率有关,大概以0.1s^-1为界分为低应变速率和高应变速率两部分;合金的表观激活能与材料的状态、变形温度及变形速率有关。当两种状态下的合金在温度为650~800℃、应变速率为0.001~0.1s^-1范围内变形时,β相内只发生动态回复,而α相除了发生动态回复外还可能发生动态再结晶;合金在相变点以上变形时只存在着单一的动态回复机制。  相似文献   

5.
为研究工业纯钛的动态再结晶行为,利用Gleebe实验机对工业纯钛在变形温度为700,800,900和950℃及应变速率为0.01,0.1,1和5s-1的条件下进行热模拟压缩实验。应用加工硬化率对实验得到的应力-应变数据进行处理,结合变形后材料微观组织的分析,求得工业纯钛的动态再结晶临界条件。结果表明,工业纯钛在热变形过程中发生了回复与再结晶;发生动态再结晶时,再结晶临界应变随温度的升高及变形速率的降低而减小。将lnθ-ε曲线的拐点处对应的应变作为材料的再结晶临界应变是合理的,工业纯钛动态再结晶临界应变εc与峰值应变εp之间满足εc=0.485εp。  相似文献   

6.
通过在Gleeble-1500D型热模拟试验机上进行的等温恒应变速率压缩试验和金相及透射分析,研究了变形温度和应变速率对TC21钛合金热变形后微观组织的影响.结果表明:变形温度和应变速率对TC21钛合金的变形组织有着显著的影响.在两相区,随着变形温度的升高,组织中初生α相含量减少,β相含量增加;在应变速率为0.01 s-1、变形温度为860和890 ℃时,初生α相发生了再结晶.随着应变速率的增加,马氏体条变窄,当应变速率较低时(0.01 s-1),组织中观察了再结晶晶粒.  相似文献   

7.
利用Gleeble-3500热/力模拟试验机对Cr8支承辊用钢在应变速率0.01~1s-1、变形温度950~1 200℃条件下进行了热压缩变形试验,研究了其热变形力学行为和再结晶规律,并对该钢热变形后的显微组织及物相变化进行了分析。结果表明:在应变速率较低为0.01s-1,当变形温度低于1 050℃时,Cr8钢热变形后的组织主要为动态回复型,当变形温度高于1 100℃时,热变形后的组织为动态再结晶型,且随着变形温度的升高,动态再结晶晶粒逐渐长大;当应变速率增加到0.1s-1时,热变形后的组织在温度低于1 050℃时为动态回复型,在温度高于1 100℃时为动态再结晶型;当应变速率增加到1s-1时,变形温度高于1 050℃时,热变形后的组织即发生了明显的再结晶,奥氏体晶粒大部分已长成为等轴的再结晶晶粒;Cr8钢热变形后的物相主要为α-Fe和γ-Fe,显微组织主要为马氏体和残余奥氏体。  相似文献   

8.
借助热模拟试验机分别研究了变形温度为800℃、850℃、900℃、950℃、1 000℃,变形速率为10 s~(-1)、1 s~(-1)、 0.1 s~(-1)、 0.01 s~(-1)条件下CuNi30Mn1Fe的高温热压缩试验。基于加工硬化率方法,分析了CuNi30Mn1Fe在热压缩变形过程中的动态再结晶行为,并求得发生动态再结晶时所对应的临界应变值。结果表明:CuNi30Mn1Fe在热压缩变形时伴随着动态回复与再结晶的发生;临界应变随着温度的增加而减小,随着应变速率的增加而增加;再结晶峰值应变ε_p和临界应变ε_c的线性关系方程为ε_c=-1.03ε_p+1.36。  相似文献   

9.
曲轴用34CrNiMo6高强结构钢的热变形行为研究   总被引:1,自引:1,他引:0  
采用Gleeble-2000热模拟试验机,在950~1150℃的压缩温度、0.001~1s-1的应变速率条件下,对一种曲轴用34CrNiMo6高强结构钢进行高温压缩变形试验,获得了该材料的流变应力曲线。通过分析研究数据,获得了该材料的热变形方程、热变形激活能、Z参数等相关数学模型;材料的流变应力曲线分析表明,34CrNiMo6钢的高温流变应力随变形温度的降低和应变速率的增加而逐渐增加;在变形过程中,变形温度和应变速率均对34CrNiMo6钢的动态再结晶和动态回复产生重要影响,升高变形温度或降低应变速率,均有利于变形过程中动态再结晶的发生,有助于变形材料的晶粒细化。  相似文献   

10.
采用MMS-300热/力模拟试验机模拟了X80管线钢的高温变形行为,通过改变变形温度、应变速率、变形程度等变形参数,得出了变形参数对实验钢高温动态软化行为和变形抗力的影响规律,建立了实验钢的动态再结晶模型和变形抗力模型。主要结果为:①实验钢的动态再结晶激活能为392.810/mol。@zener—Houomon参数与峰值应力的关系为。tnZ=31.87+4.6393ln(sinh(0.012σp))③得出了临界应变与zeller—Hollmon参数的定量关系。④所建立的变形抗力模型具有较高精度。上述结果为又80管线钢的控制轧制工艺的制定,未再结晶区轧制力的校核提供重要的参考。  相似文献   

11.
低碳钢奥氏体再结晶模型的建立   总被引:1,自引:0,他引:1  
为了描述低碳钢变形过程的组织演化,建立了一套完整的奥氏体动态再结晶、静态再结晶、亚动态再结晶模型.本文利用Gleeble试验机研究不同初始晶粒度、变形温度、应变和应变速率对奥氏体再结晶量和晶粒尺寸变化的影响.流变应力模型考虑了变形条件对模型系数的影响.利用测得的应力-应变曲线及晶粒度由多元非线性回归得出了奥氏体再结晶模型系数,并且由模型计算的峰值应变、稳定应变、硬化区流变应力、再结晶体积分数、晶粒尺寸和实际接近.  相似文献   

12.
重结晶制备超细HMX   总被引:1,自引:0,他引:1  
叙述了溶剂-非溶剂法重结晶制备超细HMX.通过实验研究分析了单一改变重结晶过程中的温度、搅拌速度、溶液过饱和度等因素,对HMX晶体粒径的影响.采用粒度分析仪分析各影响因数水平下结晶体颗粒的大小,结果表明:随着重结晶过程温差越大HMX粒度越小;随着重结晶搅拌速度的增加,结晶晶体的粒径逐渐减小;随着溶液过饱和度的提高结晶体粒度越小,分布均匀;而且与溶剂的化学性质密切相关,其中温度对结晶颗粒粒径的影响最为明显.从而为制备超细HMX,进一步改善HMX化学性能提供相关资料.  相似文献   

13.
在形变温度为1133K、形变速率为2×10~(-3)s~(-1)的试验条件下,采用两段加载拉伸试验方法研究了0.4%C-1.5%Mn钢高温变形后的静态软化行为.调查了由两次加载拉伸变形时的屈服应力求得的静态软化率以及相对峰值应力比和峰值应变比随等温保持时间的变化.详细讨论了动态回复组织和动态再结晶组织对高温变形后的静态软化过程的影响.  相似文献   

14.
为解决高温合金的难变形问题,研究了高密度脉冲电流对GH4049合金静态再结晶行为的影响规律,分析了再结晶起始温度、再结晶激活能随脉冲电流频率变化的规律及机制,讨论了时效过程中粗化γ’相对合金再结晶行为的影响.研究表明:与常规温度场相比,脉冲电流作用下GH4049合金的静态再结晶起始温度明显降低,且降低幅度随脉冲电流频率、电流密度增加而增大;粗化的γ’相对合金的静态再结晶有促进作用,这对于解决难变形镍基高温合金热加工变形温度区间窄的问题具有积极意义.  相似文献   

15.
Herein, dynamic and postdynamic recrystallization behaviors of GWZ magnesium are investigated. Toward this end, the single-hit and double-hit hot compression tests are conducted under strain rate of 0.001 s−1 at 400 °C. The prestrains of 0.1 and 0.5 are considered to investigate the effect of interpass time (5–300 s) on the compressive strength level. At the low strain level of 0.1, the contribution of Hall–Petch effect is considerable due to the occurrence of static recrystallization. In addition, the rare earth texture component is eliminated during interpass annealing. This causes increasing the strength of the material during second pass of hot compression. In contrast, at higher imposed strain, the strength level decreases with increasing the interpass time of annealing. The high amount of strain is completely consumed and the remaining stored energy is not high enough to trigger the occurrence of static recrystallization. The occurrence of metadynamic recrystallization and subsequent growth are characterized. In addition, the texture does not change in respect of the intensity or numbers/types of components. Accordingly, the observed decreasing trend of the strength is justified relying on the occurrence grain growth.  相似文献   

16.
Metadynamic recrystallization has been investigated in three plain carbon steels (ENIA, EN2 and EN24) through the use of hot interrupted compression tests on a wedge plastometer. Holding time was 0.5 s between passes. Strain rates of 0.05 and 0.12/s and small strain increments of 3, 5 and 7% were employed. Test temperatures were varied between 800 and 1100°C. Various incremental and continuous stress strain curves were highlighted at different temperatures and strain rates for 3 steels, ENIA, EN2 and EN24, resulting in varying flow stresses and strains. Highest peak stress was 180 MPa for EN24 at peak strain of 0.25 and 900°C, with a strain rate 0.12/s. Peak strain values for all steels at 1100°C was 0.133 at a strain rate of 0.05/s and 0.15 at a strain rate of 0.12/s. Strain accumulation resulted in dynamic and metadynamic recrystallization with refinement to about 15 μm for dynamic and 22 μm for metadynamic recrystallization. Fractional softening,X, decreased from 0.27 to 0.12 as recrystallization times in metadynamic recrystallization increased from 0.9 s to 1.5 s at 1100°C. Time for 50% metadynamic recrystallization was also reduced as temperature increased. For ENIA, a drop from 10000 s to 20 s, as temperature increased from 800 to 1100°C was observed. For EN24 and EN2 steels, a drop from 4000 s to 6 s for similar temperature rise was observed. Metadynamic recrystallization (at strains higher than critical strain) is observed to be a strong function of strain rate and a very weak function of temperature and strain. It significantly refined the austenite grain size prior to transformation.  相似文献   

17.
Abstract

Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with <001>, which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110}<001> (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.  相似文献   

18.
根据形核热力学理论,分析了亚动态再结晶形核的热力学过程,导出亚动态再结晶的临界形核尺寸和形核功均小于动态再结晶的临界形核尺寸和形核功的结论。在变形温度1100℃和变形速率5×10~(-2)s~(-1)条件下对 Cr25Ti 铁素体钢进行双道次热模拟试验,试验验证了上述结论。由于动态再结晶组织中尺寸为 n~*′≤n相似文献   

19.
在2618铝合金的基础上,添加Sc,Zr,降低Cu量,配制实验合金,采用金相,X-射线衍射,透射电镜,硬度测量等手段,研究了实验合金冷轧板材经不同温度退火组织性能的变化,探讨了Sc对实验合金再结晶过程与退火行为的影响规律,结果表明,Al3(Ac,Zr)质点钉扎位错,稳定亚结构,迟滞以亚晶聚合与长大为主的再结晶形核,同时也阻碍晶粒长大,因此,2618铝合金中添加Sc,Zr合金化可以提高再结晶温度;并细化再结晶组织,但Sc,Zr不宜过量,否则不利于稳定未再结晶组织,降低Cu量,虽然合金硬度下降,但是可能防止W相生成,要增添Sc,Zr含量,进一步推迟再结晶过程,提高再结晶温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号