首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-resolution magnetostratigraphic analysis of three sediment cores from the base of the volcanic seamount Vesteris Banken in the Greenland Basin and one core from the Jan Mayen Fracture Zone revealed records of three pronounced geomagnetic events within the last 200 ka. Dating by stable carbon and oxygen isotope analysis, AMS14C measurements and biostratigraphic data (foraminifera abundances) yielded ages of 28–27 ka for the Mono Lake excursion, 37–33 ka for the Laschamp event, and 189–179 ka for the Biwa I event. In at least one of the cores the Laschamp event exhibits a full reversal of the local geomagnetic field vector. The same is true of the Biwa I event, documented in one of the cores.  相似文献   

2.
We have conducted a palaeomagnetic study on three sediment cores obtained from a single site in Lake Biwa, central Japan. A total of 1430 discrete samples from three cores show strong and stable remanence, which is carried by pseudo-single-domain magnetite. Palaeomagnetic records from individual cores show little scatter of directions, and there is excellent correlation among the records from the site. A composite palaeomagnetic secular variation (PSV) record for the Holocene was constructed after fine-scale adjustment and stacking of the three records. The age model is based on two wide-spread tephra layers: Kawagodaira (3150 yr BP, calendar years) and Kikai-Akahoya (7250 yr BP). Our results show that the declinations and inclinations are strikingly similar to archaeomagnetic data from southwest Japan for the last 2000 years. The PSV record from Lake Biwa shows good correlation in directions with that of Beppu Bay, located about 500 km west of Lake Biwa, although the Beppu Bay record shows relatively smaller amplitudes of both inclination and declination, probably due to heavy smoothing of the initial results. When the Lake Biwa record is compared with the proposed type curve for southwest Japan, there is considerable disagreement throughout the Holocene. A re-analysis of the data sets and other information used to construct the type curve revealed that the discrepancy in the results was due to inadequate age determination for the cores used in previous studies. We conclude that the stacked PSV record from Lake Biwa meets the criteria required for a reliable curve. Moreover, our results resolve the complications found in the correlation of PSV records in southwest Japan and thereby contribute to a better understanding of Holocene PSV.  相似文献   

3.
Forty seven ca. 1 m sediment cores were collected from Lake Baikal during a summer cruise in 1996 and analysed for whole-core susceptibility. Fifteen of these cores were further analysed using a new prototype surface scanning sensor on board the ship R.V. Vereshchagin. The main purpose of this paper is to show that the measurement of Lake Baikal short cores using two susceptibility sensors gives valuable field data and can be used as a tool for identifying undisturbed sediment sequences. Four coring transects were sampled to identify sedimentation patterns reaching from the shelves and sub-basins of the near lake shore and across mainly the northern basin of Lake Baikal (water depth ca. 1500 m). Also in the sub-basins and in the southern basin other groups of cores were taken. One of the main sediment features of interest is that of turbidite sedimentation. Whole core magnetic susceptibility traces are used to identify turbidite fingerprints and correlate them between cores along the transects. The results from the two magnetic susceptibility sensors the whole-core sensor and the new prototype surface scanning sensor, both giving volume Kappa values, are compared and are found to be significantly correlated given the difference in resolution. The whole-core sensor gives a smoothed equivalent to a moving average curve of magnetic susceptibility while the surface scanner can give fine resolution (ca. 2 mm) results picking out fine peaks with Kappa values of between 150 to 650.The results show that most turbidite sedimentation can be clearly identified; they give a specific magnetic susceptibility fingerprint with larger Kappa values (up to 120) at the base of the turbidite corresponding with the settling of coarser sandy sediments and a steady and gradual decline in values to about 15 at the top of the turbidite where the fines settle incorporating the normal diatomaceous sedimentation. The main control on the magnetic susceptibility of the turbidite sediments is the concentration of ferrimagnetic minerals in different particle size fractions. The turbidites can be correlated between many of the cores collected along the transects but it must be noted that these correlations are partly speculative and will be confirmed with future dating, diatom analysis and geochemistry. Other very fine peaks of less than 5 mm in width identified using the surface scanning sensor may indicate concentrations of ferrimagnetic minerals, namely greigite, formed during the reduction phase.  相似文献   

4.
The subsiding Upper Klamath Lake Basin contains sediments that were continuously deposited in a shallow, freshwater lake for more than 40 000 years. Well dated by radiometric methods and containing volcanic ashes of known age, these sediments constitute a valuable paleoclimate record. Sediment constituents and properties that reflect past climatic conditions in the area include pollen, diatoms, sediment geochemistry, and sediment magnetic properties. Many of these proxy measurements are also useful for comparing natural conditions in the lake to conditions following human settlement. Because of its location, the paleoclimate record from Upper Klamath Lake is valuable for comparisons to offshore marine records and as part of latitudinal transects of paleoclimate records along the west coast of the Americas.  相似文献   

5.
Multiple cores from Lake Pumoyum Co, southern Tibet, provide an improved understanding of the spatial distribution of lake sediments, and how well they represent the paleo-climate. Comparative study of these cores using AMS 14C dating and environmental proxies clarified their relationships with environmental changes. Our work focused on understanding the spatial similarities among cores covering different time scales, and evaluating variations in sedimentary processes across sites. The four studied cores demonstrate different sedimentation rates, but environmental proxies help synchronize the timing of environmental variations. Sediment variables such as total organic carbon (TOC), inorganic carbon (IC), and grain size in different cores correlate well and corroborate changing trends over the past 10,000 cal years. Differences in sedimentation rates and facies among core sites probably result largely from differences in water depth. The core from the deepest site displays the highest average sedimentation rates and the highest accumulation rates of TOC, but lowest content of IC. Two cores from somewhat shallower sites have plant residues in their lower sections and record similar variations in both the number of layers and their depositional ages. Our results do not indicate any significant variation in sedimentation pattern or its related factors among the three sites. A single core from the deepest site could adequately represent the total lake environment over the time span covered. But cores from somewhat shallower sites might reveal important shifts in the environment over a longer time period.  相似文献   

6.
Three sediment cores from two lakes, Fish Lake and Phalarope Lake, in Truelove Lowland, Devon Island, N.W.T. were analyzed for diatoms and chemical composition. Multivariate statistical techniques using a range of chemical variables successfully isolated three sediment groupings in the cores. Allochthonous and autochthonous chemical components in the sediments have been used to reconstruct paleoenvironmental conditions. The two lakes began approximately 10600 years ago as shallow marine lagoons that were isolated from the sea as a result of glacio-isostatic rebound. Based on the presence of distinctive diatom assemblages, the three stratigraphic zones are identified as a basal marine zone, an intermediate and transitional brackish/marine zone and an upper freshwater zone. Following isolation from the sea, the lakes were flushed with freshwater produced by snow and ice melt. In Fish Lake, the period of transition from marine to freshwater, which began approximately 7000 years ago, lasted approximately 800 years. In Phalarope Lake, which was isolated from the sea approximately 5000 years ago, flushing by fresh water was completed only within the last 300 years. Fe, Cr, and Mo in the sediments are associated with the isolation phase when lake sedimentation is sensitive to the presence of brackish water and erosion within the lake catchments. In particular, the precipitation of Mo as MoS2 reflects the presence of hypolimnetic anoxia associated with lake isolation. During the early post-isolation phase the response of lake biota to an influx of nutrients is reflected in an increase in biological silica and organic carbon in the lake sediments. On the other hand, the generally low organic content of the sediments indicates that sedimentation in these lakes has been largely determined by variations in non-biogenic factors through time. During the mid Holocene the progressive stabilization of surface materials within the lake catchments is marked by decreasing Cr, As and Na in the sediments. At the same time, an increase in allochthonous Mn and Fe is attributed to progressive soil development. During the last 2500 years the catchments have experienced decreased erosion resulting in a decrease in both allochthonous clastic input and lake productivity.  相似文献   

7.
This study presents the age control and environmental magnetism components of a new, late Pleistocene paleoclimate record for the Great Basin of western North America. Two new cores from the Summer Lake sub-basin of pluvial Lake Chewaucan, Oregon, USA are correlated to basin margin outcrops on the basis of tephrochronology, lithostratigraphy, sediment magnetism and paleomagnetic secular variation. Eleven tephra layers were found in the cores that correlate to tephra identified previously in the outcrop. The Olema ash was also found in one of the cores; its stratigraphic position, relative to 3 dated tephra layers, indicates that its age is 50-55 ka, somewhat younger than has been previously reported. The Summer Lake sediments are divided into deep and shallow lake lithosomes based on sedimentary features. The stratigraphic position of these lithosomes support the tephra-based correlations between the outcrop and the cores. These sediments contain a well resolved record of the Mono Lake Excursion (MLE) and an earlier paleomagnetic excursion as well as a high quality replication of the paleosecular variation immediately above the MLE.Relative sedimentation rates increased dramatically toward the depocenter during intervals of low-lake level. In contrast, during intervals of high-lake level, relative sedimentation rates were comparable along the basin axis from the basin margin to the depocenter. The magnetic mineralogy of the Summer Lake sediments is dominated by pseudo-single domain (titano)magnetite and intervals of high/low magnetite concentration coincide with lithosomes that indicate high/low lake levels. Magnetic grain size also varies in accord with bulk sediment grain size as indicated by the silt/clay ratio. To a first order, variations in magnetic parameters, especially those attributable to the concentration of magnetic minerals, correlate well with global glacial/interglacial oscillations as indicated by marine oxygen isotope stages. This relationship can be explained by increased dissolution of (titano)magnetite minerals as lake level dropped and the lake became more productive biologically. This inference is supported by a correspondence between lower concentrations of magnetite with higher levels of total organic carbon and vice-versa.  相似文献   

8.
Alpine lakes near Mount Rainier are dammed by late-glacial moraines. Multiple cores show that sedimentation started less than 350 years after deglaciation. Numerous tephra layers provide excellent marker horizons that allow comparison of the stratigraphy without the errors associated with radiocarbon dating. Cores from different locations within a lake display the same stratigraphy and basal sediments. Core location therefore is not crucial to obtaining the oldest sediments. Continuous sedimentation in all cores is interpreted as evidence for stable lake levels throughout the Holocene. The cores are valuable tools for reconstruction and dating of glacier advances and volcanic activity.  相似文献   

9.
A combined mineral magnetic and scaled chrysophyte study of lake sediments from Lake Lacawac and Lake Giles in northeastern Pennsylvania was conducted to determine the effects of land-use and sediment source changes on the variation of pH, conductivity, and alkalinity inferred from biotic changes. Ten 30–40 cm long gravity cores were collected from Lake Lacawac and three from Lake Giles. Isothermal remanent magnetizations (IRMs) were given to the lake sediments in a 1.3 T magnetic field to measure magnetic mineral concentration variations. IRM acquisition experiments were conducted to identify magnetic mineralogy. The bedrock, soils and a peat bog on the shores of Lake Lacawac were also sampled for magnetic analysis to determine possible lake sediment sources. The top 10 cm of sediment collected from Lakes Lacawac and Giles was two to four times more magnetic than deeper sediment. 210Pb dating suggests that this intensity increase commenced circa 1900. SEM images of magnetic extracts from the highly magnetic sediments indicates the presence of magnetic fly ash microspheres from fossil fuel burning electric power generation plants. The similarity in magnetic coercivity in the top 8 cm lake sediments and in the peat bog supports an atmospheric source for some of the magnetic minerals in the youngest lake sediments. The highly magnetic sediments also contain an antiferromagnetic mineral in two cores closest to Lake Lacawacs southeastern shore. This magnetic mineral is only present deep in the soil profile and would suggest erosion and significant land-use changes in the Lacawac watershed as another cause for the high magnetic intensities (concentrations) in the top 10 cm of the lake sediments. The most significant changes in the scaled chrysophyte flora occurred immediately above the 10 cm level and were used to infer a doubling of the specific conductivity between circa 1910 and 1929. These variations also support land-use changes in the Lacawac catchment at this time. A similar shift in the scaled chrysophte flora was not observed in the top of Lake Giles, however, distinct changes were found in the deeper sections of the core coupled with a smaller peak in magnetic concentration. Fourier analysis of the 210Pb-dated lake sediment magnetics indicates the presence of a 50 year period, low amplitude variation in the Lake Lacawac, Lake Giles, and Lake Waynewood (Lott et al., 1994) magnetic concentration records. After removal of the land-use/fly ash magnetic concentration peak by Gaussian filtering, the 50 year variation correlates strongly from lake to lake even though the lakes are in different watersheds separated by up to 30 km. When this magnetic variation is compared with Gaussian-filtered rainfall variations observed in New York City and Philadelphia over the past 120–250 years there is a strong correlation suggesting that magnetic concentration variations can record regional rainfall variations with an approximately 50 year period. This result indicates that magnetics could be used to document regional variations in climatic change.  相似文献   

10.
13 lava flows of known age (ages from 14C dating), which have been erupted in the last 30 000 years, have been studied to determine the palaeosecular variation of the geomagnetic field in Central Mexico. Samples were taken from two different monogenetic volcanic fields: the Michoacan-Guanajuato volcanic field (six sites) and the Chichinautzin Formation (seven sites), both part of the Transmexican Volcanic Belt. The lavas were studied in detail using rock magnetic methods (magnetic susceptibility at room temperature, low-temperature susceptibility behaviour, hysteresis loops, Curie temperatures), combined with reflected light microscopy, in order to deduce their magnetic mineralogy and the domain states of the magnetic minerals. The magnetic carriers are titanomagnetites, which show differing degrees of high-temperature deuteric oxidation, and seem to be predominantly pseudo-single domain (PSD), though in many cases are probably a mixture of domain states. Mean palaeomagnetic directions and palaeointensity values using Shaw and Thellier techniques were obtained using several specimens from each flow. Our data seem to indicate a sharp easterly swing in declination about 5000 years ago, which is also observed in lake sediments from Central Mexico. The calculated values of the virtual dipole moment (VDM) range from 3.1 to 14.9 × 1022 A m2. Our data indicate that the virtual dipole moment seems to have increased gradually in magnitude over the last 30 kyr, with a peak at about 9000 years BP. These are features that have been observed in other parts of the globe and are probably caused by variations in the dipole part of the geomagnetic field.  相似文献   

11.
Sediment cores from Lake Tahoe permit the discrimination of turbidites initiated by seismic-induced debris flows from those generated by severe storms and associated hyperpycnal currents over the last 7000 years using integrated textural, magnetic, and geochemical signatures. Relative to fine-grained ‘background’ sediments, the majority of Tahoe turbidites exhibit coincident trends of increased mean grain size, increased magnetic susceptibility, decreased TOC, higher δ13Corg and variable C/N. We interpret these characteristics to record the rapid influx of terrigenous sediments within runoff from the watershed triggered by high-intensity storms. Correlation of multiple, individual turbidites between cores suggests a synchronicity of occurrence, supporting the model of extreme hydrologic events as the trigger for most turbidity currents into Lake Tahoe. In contrast, turbidites generated by seismic collapse of steep lake margins would have textural, magnetic and geochemical signatures that would reflect a homogenized mix of autochthonous biogenic debris and multiple older turbidites. Only one of the turbidites in the cores appears to be seismically generated. A second component of this study tested the hypothesis that turbidite clustering reflects phases of increased storminess, paleoprecipitation and lake level. We correlated broad patterns of turbidite frequency in the Tahoe cores with climate proxies from (1) elsewhere in the Tahoe watershed, (2) the western Great Basin (primarily Pyramid Lake) and (3) the San Francisco bay estuary. The reasonable degree of temporal overlap suggests that apparent trends in severe storm frequency recorded by clusters of turbidites provides a measure of long-term regional paleoprecipitation and lake level. A key finding is an extended phase of dryness and a near absence of major storms between ~3000 and ~900 cal yr B.P. in the Tahoe watershed.  相似文献   

12.
Lake Chapala, located 120 km northeast of Colima Volcano, lies at the north and northeast of the Citala rift in the Trans-Mexican Volcanic Belt. It belongs to the watershed of the Lerma River, which originates from the Mexico City area, 450 km to the east. Sediment cores, 0.5–2 m long, were collected from the lake. Magnetic susceptibility of the lake sediments generally ranges from 400 to 800 × 10−9 m3 kg−1; but in some layers it exceeds 1000 or 1500 × 10−9 m3 kg−1. The magnetic susceptibility vertical profiles display a thin peak (2–5 cm) or a double peak with magnetic susceptibility > 2000 × 10−9 m3 kg−1. Scanning electron microscope analysis shows that the main mineral responsible for the magnetic susceptibility is titano-magnetite, which is relatively abundant in the magnetic layers. In most of the cores, the layer with magnetic susceptibility > 2000 × 10−9 m3 kg−1 is coarser grained than the directly under and overlying sediments, which are composed of fine silt. But not all coarser levels are magnetic nor are all magnetic levels bound to coarser layers. The high titano-magnetic concentration probably originates from volcanic ash falls. Sedimentation rates, evaluated for several sites by means of the 210Pb and 137Cs methods, allow a date approximation (between 1535 and 1670) for the strong magnetic layer deposition. Since important eruptions of Colima Volcano, with ash fall, were reported from 1576 to 1623, the main peak of magnetic susceptibility in the sediment profiles is assumed to be related to these events. The main magnetic layer extends to greater depth in the profiles of the eastern part of the lake plain than at the west. It can, therefore, be suggested that a relative subsidence occurs in the eastern part of the lake; the axis of the eastern plain overlaps the area displaying the maximum subsidence rate and seems therefore to correspond to the prolongation of Citala rift.  相似文献   

13.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

14.
The magnetic properties of recent sediments from five short cores from Brothers Water in the English Lake District are compared with those from a set of catchment soil samples. From the comparison, it is concluded that bacterial magnetosomes have made a significant contribution to the magnetic properties of the sediments of the last five decades. This contribution is superimposed on a continuing erosive input of haematite-rich sediment from the parent materials of the catchment and may obscure any possible increase in surface soil input during recent times. The results highlight the difficulty of making sediment-source linkages where biogenic contributions to the magnetic properties of the sediment are important relative to the input of magnetic minerals from catchment erosion.  相似文献   

15.
High resolution sediment physical properties, measured on gravity and piston cores collected during cruises to Lake Winnipeg, include bulk density, acoustic velocity, magnetic susceptibility, shear strength and colour reflectance. The high resolution data are used here to construct complete stratigraphic (composite) sections of Lake Winnipeg sediments from a series of individual, discontinuous cores for the North and South Basins. These composite sections are used to evaluate basin-wide glacial and post-glacial depositional histories and to compare the northern and southern basin histories. In addition, these sections provide a baseline depth reference for interpretation of the biostratigraphy, paleomagnetic record and rock magnetic stratigraphy. Some of the data (density and shear strength) are also be used to estimate sediment stress history for the two major lithostratigraphic units and their variations across the basin.  相似文献   

16.
通过对获取的巢湖湖泊沉积岩芯的磁化率与粒度组合特征的分析,结合孢粉及相邻其它区域的环境考古资料,得出该岩芯柱样所反映的环境变化信息。结果表明:(1)巢湖湖泊沉积物磁化率曲线在117 cm以下总体上比较平稳而略有下降,117 cm以上人类活动所导致的侵蚀作用加剧使得磁化率值异常升高;(2)本岩芯柱样117 cm以下样品的磁化率强度与粘土的百分比含量呈正相关,而与粉砂组分的百分比含量成负相关;(3)根据磁化率与粒度组合变化特征,结合孢粉分析及全新世以来区域气候变化背景,9 870 Cal a B.P.以来的巢湖流域古气候环境演变可以划分6个不同的时期:9 870~7 000 Cal a B.P.,气候呈温和略干的特点;7 000~4 750 Cal a B.P.,气候温暖湿润;4 750~2 170 Cal a B.P.,流域气候温和干燥,巢湖湖盆局部地区可能出露水面以上;2 170~1 040 Cal a B.P.,气候总体上温和湿润,但是冷暖波动明显;1 040~2 00 Cal a B.P.流域处在温凉稍湿的时期,人类活动逐渐加强;200 Cal a B.P.至今,流域总体上处于相对温暖湿润阶段。  相似文献   

17.
Lake sediments can be significantly impacted by industrial activities. These impacts vary among sites and include both local point sources and atmospherically-derived pollution. Here we present results of a lake sediment pollution record from Ullswater, UK, where lead mining activities have taken place within the catchment since 1690, although large-scale mining did not begin until 1840. Metal concentration data from 12 cores taken along a lake bed transect illustrate that lead mining at Greenside Mine had a significant impact on the lake sediments. High Pb concentrations were identified throughout Ullswater, and exhibited a spatial gradient from south to north, with concentrations decreasing with greater distance from the main source of input at Glenridding. Furthermore, inter-element correlations exhibit spatial variation that reflects the processes by which they are incorporated into the lake sediment record. Together, these observations illustrate potential shortcomings in palaeoenvironmental reconstructions and pollution studies based on single cores from large and morphologically variable lakes. Sedimentation rates were estimated by matching this pollution record with the historical record of mining activities. Within Ullswater, sedimentation rates from 1840 to the present varied from 0.67 to 2.33 mm year−1 with a mean of 1.4 mm year−1; highest sedimentation rates were observed in the deepest section of the lake and close to the main inputs, and lowest sedimentation rates were observed in the northern part of the lake, furthest from the main input. Despite the considerable changes in mining techniques and production, there is little evidence to suggest significant changes in sedimentation rates over time.  相似文献   

18.
Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed 18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California.  相似文献   

19.
Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.  相似文献   

20.
A 911-m-long sediment core from Lake Biwa, Japan, provides a record of organic matter delivery and accumulation in this large lake during a succession of tectonic and climatic changes dating back to the latest Pliocene. Sediments deposited since 430 ky are profundal; older sediments vary in setting between shallow-water and fluviodeltaic conditions, with occasional deep-water intervals. C/N ratios identify algal production as the dominant source of organic matter throughout the core, although the proportion of land-derived contributions episodically increases in the fluviodeltaic and shallow-water sediments. Rates of organic matter delivery and burial in lake sediments change in response to glacial-interglacial climate changes over the past 430 ky. Sediments deposited during interglacial intervals have organic carbon mass accumulation rates up to 9 times greater than those from glacial intervals, reflecting interglacial climates that were wetter than glacial climates. Algal production of organic matter increased during interglacial times because of greater wash-in of soil nutrients, and organic matter preservation was enhanced because of faster sedimentation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号