首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cholinesterases, in addition to their well-known esterase action, also show an aryl acylamidase (AAA) activity whereby they catalyze the hydrolysis of amides of certain aromatic amines. The biological function of this catalysis is not known. Furthermore, it is not known whether the esterase catalytic site is involved in the AAA activity of cholinesterases. It has been speculated that the AAA activity, especially that of butyrylcholinesterase (BuChE), may be important in the development of the nervous system and in pathological processes such as formation of neuritic plaques in Alzheimer's disease (AD). The substrate generally used to study the AAA activity of cholinesterases is N-(2-nitrophenyl)acetamide. However, use of this substrate requires high concentrations of enzyme and substrate, and prolonged periods of incubation at elevated temperature. As a consequence, difficulties in performing kinetic analysis of AAA activity associated with cholinesterases have hampered understanding this activity. Because of its potential biological importance, we sought to develop a more efficient and specific substrate for use in studying the AAA activity associated with BuChE, and for exploring the catalytic site for this hydrolysis. Here, we describe the structure-activity relationships for hydrolysis of anilides by cholinesterases. These studies led to a substrate, N-(2-nitrophenyl)trifluoroacetamide, that was hydrolyzed several orders of magnitude faster than N-(2-nitrophenyl)acetamide by cholinesterases. Also, larger N-(2-nitrophenyl)alkylamides were found to be more rapidly hydrolyzed by BuChE than N-(2-nitrophenyl)acetamide and, in addition, were more specific for hydrolysis by BuChE. Thus, N-(2-nitrophenyl)alkylamides with six to eight carbon atoms in the acyl group represent suitable specific substrates to investigate further the function of the AAA activity of BuChE. Based on the substrate structure-activity relationships and kinetic studies, the hydrolysis of anilides and esters of choline appears to utilize the same catalytic site in BuChE.  相似文献   

2.
Flounder (Platichthys flesus) muscle contains two types of cholinesterases, that differ in molecular form and in substrate specificity. Both enzymes were purified by affinity chromatography. About 8% of cholinesterase activity could be attributed to collagen-tailed asymmetric acetylcholinesterase sedimenting at 17S, 13S and 9S, which showed catalytic properties of a true acetylcholinesterase. 92% of cholinesterase activity corresponded to an amphiphilic dimeric enzyme sedimenting at 6S in the presence of Triton X-100. Treatment with phospholipase C yielded a hydrophilic form and uncovered an epitope called the cross-reacting determinant, which is found in the hydrophilic form of a number of glycosyl-phosphatidylinositol-anchored proteins. This enzyme showed catalytic properties intermediate to those of acetylcholinesterase and butyrylcholinesterase. It hydrolyzed acetylthiocholine, propionylthiocholine, butyrylthiocholine and benzoylthiocholine. The Km and the maximal velocity decreased with the length and hydrophobicity of the acyl chain. At high substrate concentrations the enzyme was inhibited. The p(IC50) values for BW284C51 and ethopropazine were between those found for acetylcholinesterase and butylcholinesterase. For purified detergent-soluble cholinesterase a specific activity of 8000 IU/mg protein, a turnover number of 2.8 x 10(7) h-1, and 1 active site/subunit were determined.  相似文献   

3.
Huperzine A, a potential agent for therapy in Alzheimer's disease and for prophylaxis of organophosphate toxicity, has recently been characterized as a reversible inhibitor of cholinesterases. To examine the specificity of this novel compound in more detail, we have examined the interaction of the 2 stereoisomers of Huperzine A with cholinesterases and site-specific mutants that detail the involvement of specific amino acid residues. Inhibition of fetal bovine serum acetylcholinesterase by (-)-Huperzine A was 35-fold more potent than (+)-Huperzine A, with KI values of 6.2 nM and 210 nM, respectively. In addition, (-)-Huperzine A was 88-fold more potent in inhibiting Torpedo acetylcholinesterase than (+)-Huperzine A, with KI values of 0.25 microM and 22 microM, respectively. Far larger KI values that did not differ between the 2 stereoisomers were observed with horse and human serum butyrylcholinesterases. Mammalian acetylcholinesterase, Torpedo acetylcholinesterase, and mammalian butyrylcholinesterase can be distinguished by the amino acid Tyr, Phe, or Ala in the 330 position, respectively. Studies with mouse acetylcholinesterase mutants, Tyr 337 (330) Phe and Tyr 337 (330) Ala yielded a difference in reactivity that closely mimicked the native enzymes. In contrast, mutation of the conserved Glu 199 residue to Gln in Torpedo acetylcholinesterase produced only a 3-fold increase in KI value for the binding of Huperzine A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The cholinesterases have been investigated in terms of the effects of methanol and ethanol on substrate and carbamate turnover, and on their phosphorylation. It was found: 1) that at low substrate concentrations the two alcohols inhibit all three tested cholinesterases and that the optimum activities are shifted towards higher substrate concentrations, but with a weak effect on horse butyrylcholinesterase; 2) that methanol slows down carbamoylation by eserine and does not influence decarbamoylation of vertebrate and insect acetylcholinesterase and 3) that ethanol decreases the rate of phosphorylation of vertebrate acetylcholinesterase by DFP. Our results are in line with the so-called 'approach-and-exit' hypothesis. By hindering the approach of substrate and the exit of products, methanol and ethanol decrease cholinesterase activity at low substrate concentrations and allow for the substrate inhibition only at higher substrate concentrations. Both effects appears to be a consequence of the lower ability of substrate to substitute alcohol rather than water. It also seems that during substrate turnover in the presence of alcohol the transacetylation is negligible.  相似文献   

5.
The kinetics of hydrolysis of N-methyl-N-(β-acetoxyethyl)-piperidinium by highly purified horse blood serum butyrylcholinesterase is studied at pH 7.5 and 25°C. A pronounced inhibition of catalytic activity of this enzyme by high concentrations of the substrate is revealed. The substrate inhibition can be explained either by interaction of the acylated enzyme with substrate with formation of the corresponding inactive complex ES'S or by sorption of substrate outside the enzyme active center and the resulted conformational changes of the enzyme molecule.  相似文献   

6.
The cholinesterases have been investigated in terms of the effects of methanol and ethanol on substrate and carbamate turnover, and on their phosphorylation. It was found: 1) that at low substrate concentrations the two alcohols inhibit all three tested cholinesterases and that the optimum activities are shifted towards higher substrate concentrations, but with a weak effect on horse butyrylcholinesterase; 2) that methanol slows down carbamoylation by eserine and does not influence decarbamoylation of vertebrate and insect acetylcholinesterase and 3) that ethanol decreases the rate of phosphorylation of vertebrate acetylcholinesterase by DFP. Our results are in line with the so-called ‘approach-and-exit’ hypothesis. By hindering the approach of substrate and the exit of products, methanol and ethanol decrease cholinesterase activity at low substrate concentrations and allow for the substrate inhibition only at higher substrate concentrations. Both effects appears to be a consequence of the lower ability of substrate to substitute alcohol rather than water. It also seems that during substrate turnover in the presence of alcohol the transacetylation is negligible.  相似文献   

7.
Acetylcholinesterase is an enzyme whose best-known function is to hydrolyze the neurotransmitter acetylcholine. Acetylcholinesterase is expressed in several noncholinergic tissues. Accordingly, we report for the first time the identification of acetylcholinesterase in human umbilical cord vein endothelial cells. Here we further performed an electrophoretic and biochemical characterization of this enzyme, using protein extracts obtained by solubilization of human endothelial cell membranes with Triton X-100. These extracts were analyzed under polyacrylamide gel electrophoresis in the presence of Triton X-100 and under nondenaturing conditions, followed by specific staining for cholinesterase or acetylcholinesterase activity. The gels revealed one enzymatically active acetylcholinesterase band in the extracts that disappeared when staining was performed in the presence of eserine (an acetylcholinesterase inhibitor). Performing western blotting with the C-terminal anti-acetylcholinesterase IgG, we identified a single protein band of approximately 70 kDa, the molecular mass characteristic of the human monomeric form of acetylcholinesterase. The western blotting with the N-terminal anti-acetylcholinesterase IgG antibody revealed a double band around 66-70 kDa. Using the Ellman's method to measure the cholinesterase activity in human umbilical vein endothelial cells, regarding its substrate specificity, we confirmed the existence of an acetylcholinesterase enzyme. Our studies revealed a predominance of acetylcholinesterase over other cholinesterases in human endothelial cells. In conclusion, we have demonstrated the existence of a membrane-bound acetylcholinesterase in human endothelial cells. In future studies, we will investigate the role of this protein in the endothelial vascular system.  相似文献   

8.
Review of the own and literature data on investigation of substrate specificity of different cholinesterases using thiosubstrates is presented. Dependence of cholinesteratic hydrolysis parameters on various elements of their structure—the acyl part, alkyl “bridge” between ester atom and onium group, and the molecule ammonium grouping—is considered using 44 thioesters in total. A comparative enzymological analysis of the substrate specificity is performed with use of thiocholine esters of acetic, propionic, and butyric acids for 40 cholinesterase preparations of mammals, insects, mollusks, and plants.  相似文献   

9.
Theoretical analysis is carried out and a reliable kinetic method for establishment of individuality of cholinesterases in studied preparation is proposed. For reliable conclusion about the presence of single cholinesterase or a mixture of cholinesterases in the biosample, it is necessary to determine values of the experimental kinetic constant of irreversible inhibition by several (three or more) inhibitors, using for evaluation of the catalytic activity of the biomaterial not less than three different substrates consecutively, for example, acetyl--methylcholine (substrate selective to typical acetylcholinesterase), butyrylcholine (substrate selective to typical butyrylcholinesterase), and acetylcholine (substrate hydrolyzed easily by cholinesterases of different types).  相似文献   

10.
Studies have been made of the effect of three groups of ammonia reversible inhibitors on the activity of erythrocyte acetylcholinesterase, serum butyrylcholinesterase, cholinesterase from frog brain, as well as cholinesterases from the optical ganglia of the Pacific and three populations of the commander squids. Determination of kinetic parameters of the reversible inhibition of these enzymes revealed differences resulting from the specific structure of their catalytic centers. Tetramethylammonium assay confirmed different properties of cholinesterases in individuals of the commander squid from various habitats in the Bering Sea; this finding may be taken as an indication of intraspecific differentiation of these cephalopods. Certain similarity was noted in the inhibitory specificity of cholinesterases from the Pacific and "southern" commander squids with the overlapping habitats.  相似文献   

11.
Using the methods of factor and cluster analysis, the statistical treatment is performed of data on interaction of seven cholinesterases (ChE)—human acetylcholinesterase, horse butyrylcholinesterase, cholinesterases of frog brain and of different squid species (Todarodes pacificus and Berrytheutis magister, in the latter case, individuals from three different habitats are compared)—with 141 reversible inhibitors of various structures. Statistically significant differences between ChE of squids and vertebrates are shown. The previously revealed intraspecies peculiarities of ChE in the Commander squid B. magister are statistically confirmed.  相似文献   

12.
Commercial preparations of acetylcholinesterase (EC 3.1.1.7) and of cholinesterase (EC 3.1.1.8) were characterized by organophosphate inhibition. Cholinesterase activities were inhibited by varying organophosphate concentration and time of inhibition. Bimolecular rate constants were determined by plotting log activity vs inhibitor concentration or inhibition time. Inhibition of acetylcholinesterase from bovine erythrocytes by diethyl p-nitrophenyl phosphate (Paraoxon), diisopropylphosphorofluoridate (DFP), and N,N′-diisopropylphosphorodiamidic fluoride (Mipafox) in semilogarithmic plots showed a linear decay of activity. Inhibition of acetylcholinesterase from electric eel (Electrophorus electricus) and of cholinesterases from horse serum and from human serum did not show linear characteristics, indicating the presence of more than one single enzyme in these preparations. The corresponding inhibition curves were resolved by subtraction of exponential functions. In each case two different activity components were identified and characterized in respect to partial activity, substrate specificity, and reactivity with organophosphorous compounds. The suitability of the method for application on crude homogenates is discussed.  相似文献   

13.
A 15N-NMR study on ribonuclease T1-guanylic acid complex   总被引:1,自引:0,他引:1  
Ribonuclease T1 is highly specific for the guanylic acid residue in polyribonucleotides. To clarify the origin of the substrate specificity, the interaction sites of guanylic acid with ribonuclease T1 were investigated by the use of 15N-NMR. 95% 15N-enriched guanosine-3'-phosphate was prepared and mixed with purified ribonuclease T1. 15N-NMR spectra of the mixtures at different concentrations were obtained and compared with that of the 15N-enriched substrate alone. Upon complex formation, a 15N signal assigned to the amino group nitrogen at position 2 of guanine shifted and was significantly broadened, suggesting a strong interaction with the enzyme through the amino group. This observation is consistent with the results of studies on the substrate specificity of chemical modification. Nuclear Overhauser effects of signals assigned to N-7 and N-3 were also changed, but not shift was observed. The observations do not support the occurrence of protonation at N-7 upon complex formation, which was previously proposed.  相似文献   

14.
The poorly known mechanism of inhibition of cholinesterases by inorganic mercury (HgCl2) has been studied with a view to using these enzymes as biomarkers or as biological components of biosensors to survey polluted areas. The inhibition of a variety of cholinesterases by HgCl2 was investigated by kinetic studies, X-ray crystallography, and dynamic light scattering. Our results show that when a free sensitive sulfhydryl group is present in the enzyme, as in Torpedo californica acetylcholinesterase, inhibition is irreversible and follows pseudo-first-order kinetics that are completed within 1 h in the micromolar range. When the free sulfhydryl group is not sensitive to mercury (Drosophila melanogaster acetylcholinesterase and human butyrylcholinesterase) or is otherwise absent (Electrophorus electricus acetylcholinesterase), then inhibition occurs in the millimolar range. Inhibition follows a slow binding model, with successive binding of two mercury ions to the enzyme surface. Binding of mercury ions has several consequences: reversible inhibition, enzyme denaturation, and protein aggregation, protecting the enzyme from denaturation. Mercury-induced inactivation of cholinesterases is thus a rather complex process. Our results indicate that among the various cholinesterases that we have studied, only Torpedo californica acetylcholinesterase is suitable for mercury detection using biosensors, and that a careful study of cholinesterase inhibition in a species is a prerequisite before using it as a biomarker to survey mercury in the environment.  相似文献   

15.
In an effort to identify novel multifunctional drug candidates for the treatment of Alzheimer’s disease (AD), a series of hybrid molecules were synthesised by reacting N-(aminoalkyl)tacrine with salicylic aldehyde or derivatives of 2-aminobenzaldehyde. These compounds were then evaluated as multifunctional anti-Alzheimer’s disease agents. All of the hybrids are potential biometal chelators, and in addition, most of them were better antioxidants and inhibitors of cholinesterases and amyloid-β (Aβ) aggregation than the lead compound tacrine. Compound 7c has the potential to be a candidate for AD therapy: it is a much better inhibitor of acetylcholinesterase (AChE) than tacrine (IC50: 0.55 nM vs 109 nM), has good biometal chelation ability, is able to inhibit Aβ aggregation and has moderate antioxidant activity (1.22 Trolox equivalents).  相似文献   

16.
Previous studies indicated that accumulation of alpha-fucosyl-GM1 (IV2FucII3NeuAcGgOse4Cer) and alpha-galactosyl-alpha-fucosyl-GM1 (IV3GalIV2FucII3NeuAcGgOse4Cer) occurs in precancerous livers of rats fed the chemical carcinogen N-2-acetylaminofluorene, before development of hepatoma. Both fucogangliosides were completely absent in normal rat liver as well as in livers of rats fed a nonhepatic carcinogen and tumor promoters (Holmes, E.H., and Hakomori, S. (1982) J. Biol. Chem. 257, 7698-7703). The enzymatic basis of the chemical changes described above is reported in this paper. The alpha-L-fucosyltransferase activity toward GM1 (II2NeuAcGgOse4Cer) as well as asialo-GM1 (GgOse4Cer) was almost undetectable in extracts from normal rat liver, but significant activity of this enzyme was detected in extracts of rat livers after 4 weeks of feeding a diet containing N-2-acetylaminofluorene. The same enzyme activity in cultured rat hepatoma cells was 18- to 47-fold higher than in N-2-acetylaminofluorene-fed rat liver. In contrast, alpha-galactosyltransferase activity with a broad substrate specificity was detected in normal as well as in N-2-acetylaminofluorene-fed liver, although the specific activity of this enzyme in Golgi membranes in precancerous liver was significantly higher than that of normal rat liver. Thus, the appearance of alpha-fucosyl-alpha-galactosyl-GMI in precancerous liver is due to an induction of synthesis of alpha-fucosyl-GMI which is the substrate for the normally existing alpha-galactosyltransferase. The activity of alpha-fucosyltransferase was highly specific toward a substrate structure Gal beta 1 leads to 3GalNAc beta 1 leads to R in GMI or asialo-GMI and showed an anomalous inhibition by a large variety of detergents tested. In contrast, the alpha-galactosyltransferase showed a wide substrate specificity, activated by detergents and Mn2+ ion. Membrane alterations in precancerous and malignant transformation of rat liver is associated with an induction of an unusual alpha-fucosyltransferase which is the key step in synthesis of both fucogangliosides.  相似文献   

17.
The influence of cationic detergent cetyltrimethylammonium on the human blood cholinesterases activity (erythrocyte acetylcholinesterase and plasma butyrylcholinesterase) in reactions of hydrolysis of alpha-thionaphthylacetat and acetylthiocholine is studied. It is shown, that cetyltrimethylammonium is reversible effector for both cholinesterases. This compound competitively inhibited enzymatic hydrolysis of acetylthiocholine by both cholinesterases, and in the reactions of enzymatic hydrolysis alpha-thionaphthylacetat display as the synergistic activator--in experiments with butyrylcholinesterase, and as the reversible inhibitor--in experiments with acetylcholinesterase. Kinetic constants in reaction of acetylcholinesterase inhibition by cetyltrimethylammonium defined by means of different substrates--alpha-thionaphthylacetat and acetylthiocholin. They are close among themselves and amount (2.5 +/- 0.3) x 10(-5) and (2.8 +/- 0.3) x 10(-5) M, accordingly. Butyrylcholinesterase was more sensitive to influence of cetyltrimethylammonium. The kinetic constants defined for this enzyme by the effect of inhibition of acetylthiocholin hydrolysis or activation of alpha-thionaphthylatcetat hydrolysis, are also close among themselves and amount (3.9 +/- 0.4) x 10(-6) and (4.4 +/- 0.4) x 10(-6) M, accordingly.  相似文献   

18.
The synthesis of various cholinesterases in different fetal human tissues was studied using in vitro and in ovo translation of poly(A)+ RNA, followed by crossed immunoelectrophoretic autoradiography. When unfractionated poly(A)+ mRNA from fetal brain, muscle, or liver was translated in vitro, in the reticulocyte lysate cell-free system, polypeptides were synthesized which reacted with antibodies against either "true" acetylcholinesterase (acetylcholine hydrolase; EC 3.1.1.7) or "pseudo", butyrylcholinesterase (acylcholine acylhydrolase; EC 3.1.1.8). The two nascent cholinesterases could be separated by crossed immunoelectrophoresis followed by autoradiography, suggesting that acetylcholinesterase and butyrylcholinesterase are produced in all three tissues from nascent polypeptides containing different immunological domains. To examine whether the biosynthesis of cholinesterases includes posttranslational processing events, Xenopus oocytes were microinjected with mRNA from these tissues. Immunoelectrophoretic analysis of oocyte intracellular homogenates and incubation medium revealed various precipitation arcs, reflecting the synthesis and posttranslational processing of multiple forms of tissue-specific exported and intracellular acetylcholinesterase and butyrylcholinesterase. These findings demonstrate that polymorphic cholinesterases are produced from nascent polypeptide products which undergo further posttranslational processing events in a tissue-specific manner before they become mature compartmentalized cholinesterases.  相似文献   

19.
Literature data have been summarized on interaction of cholinesterases of some mammals and arthropods with a group of isomer derivatives of alkaloid lupini and its epimer epilupinin. As substrates of cholinesterases of several mammals there are studied 8 acetates containing in their molecules the chinolysidin bicycle with different structure of N-alkyl radical, which showed certain elements of specificity of action. For 2 isomer esters that are derivatives of the protonated base of the lupinin and epilupinin structures, differences in their substrate characteristics were revealed. The polyenzyme analysis if anticholinesterase efficiency was performed for 30 organophosphorus inhibitors that are dialkoxyphosphorus derivatives of lupinin and epilupinin; as a result, quite a few peculiarities of their action depending on their structure were revealed. Several tested compounds turned out to act as specific inhibitors of cholinesterases of some mammals and arthropods.  相似文献   

20.
The data on sensitivity of cholinesterases (ChE) of different insects to reversible inhibitors, as well as the data on physico-chemical parameters of amino acids constituting their active centers, were treated by factor analysis and juxtaposed. It is shown that both these characteristics are related to taxonomical belonging of insects. It is revealed the "material substrate" of the factors determining inhibitor action specificity, which are specific sites in ChE active center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号