首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The potential signal‐to‐noise ratio (SNR) gain at ultrahigh field strengths offers the promise of higher image resolution in single‐shot diffusion‐weighted echo‐planar imaging the challenge being reduced T2 and T2* relaxation times and increased B0 inhomogeneity which lead to geometric distortions and image blurring. These can be addressed using parallel imaging (PI) methods for which a greater range of feasible reduction factors has been predicted at ultrahigh field strengths—the tradeoff being an associated SNR loss. Using comprehensive simulations, the SNR of high‐resolution diffusion‐weighted echo‐planar imaging in combination with spin‐echo and stimulated‐echo acquisition is explored at 7 T and compared to 3 T. To this end, PI performance is simulated for coil arrays with a variable number of circular coil elements. Beyond that, simulations of the point spread function are performed to investigate the actual image resolution. When higher PI reduction factors are applied at 7 T to address increased image distortions, high‐resolution imaging benefits SNR‐wise only at relatively low PI reduction factors. On the contrary, it features generally higher image resolutions than at 3 T due to smaller point spread functions. The SNR simulations are confirmed by phantom experiments. Finally, high‐resolution in vivo images of a healthy volunteer are presented which demonstrate the feasibility of higher PI reduction factors at 7 T in practice. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

3.

Purpose

To compare and evaluate images acquired with two different MR angiography (MRA) sequences, three‐dimensional (3D) half‐Fourier fast spin‐echo (FSE) and 3D true steady‐state free‐precession (SSFP) combined with two time‐spatial labeling inversion pulses (T‐SLIPs), for selective and non‐contrast‐enhanced (non‐CE) visualization of the portal vein.

Materials and Methods

Twenty healthy volunteers were examined using half‐Fourier FSE and true SSFP sequences on a 1.5T MRI system with two T‐SLIPs, one placed on the liver and thorax, and the other on the lower abdomen. For quantitative analysis, vessel‐to‐liver contrast (Cv‐l) ratios of the main portal vein (MPV), right portal vein (RPV), and left portal vein (LPV) were measured. The quality of visualization was also evaluated.

Results

In both pulse sequences, selective visualization of the portal vein was successfully conducted in all 20 volunteers. Quantitative evaluation showed significantly better Cv‐l at the RPVs and LPVs in half‐Fourier FSE (P < 0.0001). At the MPV, Cv‐l was better in true SSFP, but was not statistically different. Visualization scores were significantly better only at branches of segments four and eight for half‐Fourier FSE (P = 0.001 and 0.03, respectively).

Conclusion

Both 3D half‐Fourier FSE and true SSFP scans with T‐SLIPs enabled selective non‐CE visualization of the portal vein. Half‐Fourier FSE was considered appropriate for intrahepatic portal vein visualization, and true SSFP may be preferable when visualization of the MPV is required. J. Magn. Reson. Imaging 2009;29:1140–1146. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
For the purpose of visualizing low‐flow as well as high‐flow blood vessels without using contrast agents, we propose a new technique called a hybrid of opposite‐contrast MR angiography (HOP‐MRA). HOP‐MRA is a combination of standard time‐of‐flight (TOF) using a full first‐order velocity‐compensation for white‐blood (WB) and flow‐sensitive black‐blood (FSBB) techniques, which use motion‐probing gradients to introduce intravoxel flow dephasing. A dual‐echo three‐dimensional gradient echo sequence was used to reduce both imaging time and misregistration. HOP‐MRA images were obtained using a simple‐weighted subtraction (SWS) or a frequency‐weighted subtraction (FWS) applying different spatial filtering for WB and BB images. We then assessed the relationships among the contrast‐to‐noise ratios (CNR) of the blood‐to‐background signals for those three images. In both volunteer and clinical brain studies, low‐flow vessels were well visualized and the background signal was well suppressed by HOP‐MRA compared with standard TOF‐ or BB‐MRA. The FWS was better than the SWS when whole‐maximum intensity projection was performed on a larger volume including with different types of tissue. The proposed HOP‐MRA was proven to visualize low‐flow to high‐flow vessels and, therefore, demonstrates excellent potential to become a clinically useful technique, especially for visualizing collateral vessels which is difficult with standard TOF‐MRA. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
A magnitude‐based MR angiography method of standard time‐of‐flight (TOF) employing a three‐dimensional gradient‐echo sequence with flow rephasing is widely used. A recently proposed flow‐sensitive black‐blood (FSBB) method combining three‐dimensional gradient‐echo sequence with a flow‐dephasing gradient and a hybrid technique, called hybrid of opposite‐contrast, allow depiction of smaller blood vessels than does standard TOF. To further enhance imaging of smaller vessels, a new enhancement technique combining phase with magnitude is proposed. Both TOF and FSBB pulse sequences were used with only 0th‐order gradient moment nulling, and suitable dephasing gradients were added to increase the phase shift introduced mainly by flow. Magnitude‐based vessel‐to‐background contrast‐to‐noise ratios in TOF and FSBB were further enhanced to increase the dynamic range between positive and negative signals through the use of cosine‐function‐based filters for white‐ and black‐blood imaging. The proposed phase‐enhancement processing both improved visualization of slow‐flow vessels in the brains of volunteer subjects with shorter echo time in TOF, FSBB, and hybrid of opposite‐contrast and reduced wraparound artifacts with smaller b values without sacrificing vessel‐to‐background contrast in FSBB. This method of enhancement processing has excellent potential to become clinically useful. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.

Purpose:

To demonstrate the feasibility of two‐dimensional selective radio frequency (2DRF) excitations for fast‐spin‐echo imaging of inner fields‐of‐view (FOVs) in order to shorten acquisitions times, decrease RF energy deposition, and reduce image blurring.

Materials and Methods:

Fast‐spin‐echo images (in‐plane resolution 1.0 × 1.0 mm2 or 0.5 × 1.0 mm2) of inner FOVs (40 mm, 16 mm oversampling) were obtained in phantoms and healthy volunteers on a 3 T whole‐body MR system using blipped‐planar 2DRF excitations.

Results:

Positioning the unwanted side excitations in the blind spot between the image section and the slice stack to measure yields minimum 2DRF pulse durations (about 6 msec) that are compatible with typical echo spacings of fast‐spin‐echo acquisitions. For the inner FOVs, the number of echoes and refocusing RF pulses is considerably reduced which compared to a full FOV (182 mm) reduces the RF energy deposition by about a factor of three and shortens the acquisition time, e.g., from 39 seconds to 12 seconds for a turbo factor of 15 or from 900 msec to 280 msec for a single‐shot acquisition, respectively. Furthermore, image blurring occurring for high turbo factors as in single‐shot acquisitions is considerably reduced yielding effectively higher in‐plane resolutions.

Conclusion:

Inner‐FOV acquisitions using 2DRF excitations may help to shorten acquisitions times, ameliorate image blurring, and reduce specific absorption rate (SAR) limitations of fast‐spin‐echo (FSE) imaging, in particular at higher static magnetic fields. J. Magn. Reson. Imaging 2010;31:1530–1537. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Three‐dimensional cardiac magnetic resonance perfusion imaging is promising for the precise sizing of defects and for providing high perfusion contrast, but remains an experimental approach primarily due to the need for large‐dimensional encoding, which, for traditional 3DFT imaging, requires either impractical acceleration factors or sacrifices in spatial resolution. We demonstrated the feasibility of rapid three‐dimensional cardiac magnetic resonance perfusion imaging using a stack‐of‐spirals acquisition accelerated by non‐Cartesian kt SENSE, which enables entire myocardial coverage with an in‐plane resolution of 2.4 mm. The optimal undersampling pattern was used to achieve the largest separation between true and aliased signals, which is a prerequisite for kt SENSE reconstruction. Flip angle and saturation recovery time were chosen to ensure negligible magnetization variation during the transient data acquisition. We compared the proposed three‐dimensional perfusion method with the standard 2DFT approach by consecutively acquiring both data during each R–R interval in cardiac patients. The mean and standard deviation of the correlation coefficients between time intensity curves of three‐dimensional versus 2DFT were 0.94 and 0.06 across seven subjects. The linear correlation between the two sets of upslope values was significant (r = 0.78, P < 0.05). Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.
12.
Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g‐factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal‐to‐noise ratio and g‐factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple “prescan” measurement of noise amplitude and correlation in the phased‐array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal‐to‐noise ratio and g‐factor. The “pseudo multiple replica” method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel‐by‐pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k‐space trajectories, image reconstruction, or noise conditioning techniques. Magn Reson Med 60:895–907, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
We prospectively assessed the diagnostic accuracy of non‐contrast‐enhanced MR venography using both the flow‐refocused fresh‐blood imaging (FR‐FBI) and the swap phase‐encode arterial double‐subtraction elimination (SPADE) techniques for detecting deep vein thrombosis (DVT), as compared using conventional X‐ray venography as the reference standard. Forty‐one legs of 32 consecutive patients (eight men, 24 women; mean age ± standard deviation, 69.4 ± 15.3 years) suspected of having deep vein thrombosis and thus examined using conventional X‐ray venography underwent MR FR‐FBI and SPADE. Twenty‐five of the 32 patients had nonmagnetizing, metal implants they had received during hip or leg surgery. Two radiologists independently assessed the MR venograms as either diagnostic or nondiagnostic and with either the presence or absence of thrombi. The sensitivities of FR‐FBI and SPADE for diagnosing thrombus were 100% (53 of 53) for both reviewers. Nondiagnostic segments were excluded from this analysis. The corresponding specificities were 100% (238 of 238 for reviewer A) and 99.6% (237 of 238 for reviewer B). The interobserver agreement regarding the MR images for the assessment of thrombosis was high (κ = 0.92). Non‐contrast‐enhanced MR venography using SPADE and FR‐FBI is highly accurate and reproducible for diagnosing DVT. This is especially advantageous for patients who have received nonmagnetizing, metal implants during orthopedic surgery. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
19.
20.
The performance of multidimensional spatially selective radiofrequency (RF) pulses is often limited by their long duration. In this article, high‐order, nonlinear gradients are exploited to reduce multidimensional RF pulse length. Specifically, by leveraging the multidimensional spatial dependence of second‐order gradients, a two‐dimensional spatial‐spectral RF pulse is designed to achieve three‐dimensional spatial selectivity, i.e., to excite a circular region‐of‐interest in a thin slice for reduced field‐of‐view imaging. Compared to conventional methods that use three‐dimensional RF pulses and linear gradients, the proposed method requires only two‐dimensional RF pulses, and thus can significantly shorten the RF pulses and/or improve excitation accuracy. The proposed method has been validated through Bloch equation simulations and phantom experiments on a commercial 3.0T MRI scanner. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号