首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Self-assembly plays an important role in the formation of many chiral biological structures and in the preparation of chiral functional materials. Therefore the control of chirality in synthetic or biological self-assembled systems is important either for the comprehension of recognition phenomena or to obtain materials with predictable and controllable properties. Circular dichroism was developed to study molecular chirality, however, because of its outstanding sensitivity to chiral perturbations of the system under investigation; it has been extended more recently to supramolecular chemistry. In particular, self-assembly processes leading to the formation of chiral supramolecular architectures (and eventually to gels or liquid crystal phases) can be monitored by CD. Furthermore, CD spectroscopy often allows one to obtain structural information on the assembled structures. This review deals with representative contributions to the study of supramolecular chirality by means of circular dichroism.  相似文献   

2.
The function of many specialized polymers calls for properties such as chirality and biodegradability. The stereo, -positional-and chemo-selectivities characteristic of enzymatic catalysis are highly desirable attributes for incorporation into strategies for synthesizing such polymers. Enzymes alone, or in combination with chemical synthesis (i.e. chemoenzymatic methodologies), are finding increased use in the synthesis of novel materials. Potential applications include water-absorbents, hydrogels, biodegradable materials, chiral adsorbents, liquid crystals and permselective membranes.  相似文献   

3.
Ji N  Shen YR 《Chirality》2006,18(3):146-158
Recent advances in developing sum frequency generation (SFG) as a novel spectroscopic probe for molecular chirality are reviewed. The basic principle underlying the technique is briefly described, in comparison with circular dichroism (CD). The significantly better sensitivity of the technique than CD is pointed out, and the reason is discussed. Bi-naphthol (BN) and amino acids are used as representatives for two different types of chiral molecules; the measured chirality in their electronic transitions can be understood by two different molecular models, respectively, that are extensions of models developed earlier for CD. Optically active or chiral SFG from vibrational transitions are weaker, but with the help of electronic-vibrational double resonance, the vibrational spectrum of a monolayer of BN has been obtained. Generally, optically active SFG is sufficiently sensitive to be employed to probe in-situ chirality of chiral monolayers and thin films.  相似文献   

4.
Chiral nanotechnology   总被引:1,自引:0,他引:1  
Zhang J  Albelda MT  Liu Y  Canary JW 《Chirality》2005,17(7):404-420
A review of chiral, nanoscale science and technology is presented, with the subject divided into two topics. The first discusses nanotechnology in the service of asymmetric synthesis, chiral separations, and analysis. The second topic concerns broader research in the nanotechnology realm, where molecular chirality plays a role in the properties of materials, including molecular devices, chiral supramolecules, chiral nanotubes, chiral fullerenes, and DNA nanotechnology.  相似文献   

5.
A synergetic law, being of common physicochemical and biological sense, is formulated: any evolving system that possesses an excess of free energy and elements with chiral asymmetry, while being within one hierarchical level, is able to change the type of symmetry in the process of self-organization increasing its complexity but preserving the sign of prevailing chirality (left — L or right — D twist). The same system tends to form spontaneously a sequence of hierarchical levels with alternating chirality signs of de novo formed structures and with an increase of the structures’ relative scales. In living systems, the hierarchy of conjugated levels of macromolecular structures that begins from the “lowest” asymmetric carbon serves as an anti-entropic factor as well as the structural basis of “selected mechanical degrees of freedom” in molecular machines. During transition of DNA to a higher level of structural and functional organization, regular alterations of the chirality sign D-L-D-L and L-D-L-D for DNA and protein structures, respectively, are observed. Sign-alternating chiral hierarchies of DNA and protein structure, in turn, form a complementary conjugated chiral pair that represents an achiral invariant that “consummates” the molecular-biological block of living systems. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development though a series of chiral bifurcations. The hierarchy of macromolecular structures demarcated by the chirality sign predetermined the possibility of the “block” character of biological evolution.  相似文献   

6.
Hisaki I  Tohnai N  Miyata M 《Chirality》2008,20(3-4):330-336
The concept of supramolecular chirality has assumed increasing importance in association with the development of supramolecular chemistry over the last two decades. In chiral crystals, 2 1 helical molecular assemblies are frequently observed as key motifs. Helical handedness of the 2 1 assemblies, however, has not been determined from the mathematical or crystallographical viewpoints. In this context, we have proposed two new concepts, three-axial chirality and tilt chirality. On the basis of the concepts, we describe supramolecular chirality and determine the handedness of 2 1 assemblies that are composed of relatively complicated molecules with multiple stereogenic centers such as brucine, bile acids, and cinchona alkaloids as well as those of simple molecules.  相似文献   

7.
Meguro H  Kim JH  Bai C  Nishida Y  Ohrui H 《Chirality》2001,13(8):441-445
Molecular design and applications of a fluorometric chiral agent, (S)-TBMB carboxylic acid, are briefly reviewed. The agent, possessing an asymmetric 1,3-benzodioxole skeleton, was designed as a novel class of chiral agent that functions also as a benzoate chromophore for exciton chirality CD methods. The utility of this agent has been demonstrated in an application to determine enantiomeric amino acids, acyl-sn-glycerols, glycosyl-sn-glycerols, and other chiral alcohols and amines.  相似文献   

8.
The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported.  相似文献   

9.
In this article, we will review and highlight some recent computational work on enantioselective adsorption and catalysis in zeolites and metal–organic frameworks. The design, development and understanding of chiral structures will help expand the utility of nanoporous materials into chiral technology. The highlighted works are examples of how molecular simulations can provide a fundamental understanding of chirality in nanoporous materials. This understanding is essential to help in the design and development of next-generation enantioselective separation devices and catalysts.  相似文献   

10.
Biomineralization, the capacity to form minerals, has evolved in a great diversity of bacterial lineages as an adaptation to different environmental conditions and biological functions. Microbial biominerals often display original properties (morphology, composition, structure, association with organics) that significantly differ from those of abiotically formed counterparts, altogether defining the ‘mineral phenotype’. In principle, it should be possible to take advantage of microbial biomineralization processes to design and biomanufacture advanced mineral materials for a range of technological applications. In practice, this has rarely been done so far and only for a very limited number of biomineral types. This is mainly due to our poor understanding of the underlying molecular mechanisms controlling microbial biomineralization pathways, preventing us from developing bioengineering strategies aiming at improving biomineral properties for different applications. Another important challenge is the difficulty to upscale microbial biomineralization from the lab to industrial production. Addressing these challenges will require combining expertise from environmental microbiologists and geomicrobiologists, who have historically been working at the forefront of research on microbe–mineral interactions, alongside bioengineers and material scientists. Such interdisciplinary efforts may in the future allow the emergence of a mineral biomanufacturing industry, a critical tool towards the development more sustainable and circular bioeconomies.  相似文献   

11.
L D Barron 《Bio Systems》1987,20(1):7-14
Physical systems which exhibit distinguishable enantiomers under space inversion are not necessarily chiral. A new definition of chirality is proposed that enables true and false chirality to be distinguished. Although spatial enantiomorphism is sufficient to guarantee chirality in a stationary object, enantiomorphous systems are not necessarily chiral when motion is involved. Only a truly chiral influence can induce absolute asymmetric synthesis in a reaction mixture at thermodynamic equilibrium, but false chirality might suffice if equilibrium is not attained. Parity violation lifts only the degeneracy of enantiomers of truly chiral systems, the true enantiomers (i.e. strictly degenerate) being interconverted by space inversion together with charge conjugation. The time-independence of optical activity arising from parity violation is contrasted with the time-dependence of that arising from spontaneous parity breaking.  相似文献   

12.
《Biophysical journal》2022,121(19):3745-3752
Small-molecule DNA-binding drugs have shown promising results in clinical use against many types of cancer. Understanding the molecular mechanisms of DNA binding for such small molecules can be critical in advancing future drug designs. We have been exploring the interactions of ruthenium-based small molecules and their DNA-binding properties that are highly relevant in the development of novel metal-based drugs. Previously we have studied the effects of the right-handed binuclear ruthenium threading intercalator ΔΔ-[μ-bidppz(phen)4Ru2]4+, or ΔΔ-P for short, which showed extremely slow kinetics and high-affinity binding to DNA. Here we investigate the left-handed enantiomer ΛΛ-[μ-bidppz(phen)4Ru2]4+, or ΛΛ-P for short, to study the effects of chirality on DNA threading intercalation. We employ single-molecule optical trapping experiments to understand the molecular mechanisms and nanoscale structural changes that occur during DNA binding and unbinding as well as the association and dissociation rates. Despite the similar threading intercalation binding mode of the two enantiomers, our data show that the left-handed ΛΛ-P complex requires increased lengthening of the DNA to thread, and it extends the DNA more than double the length at equilibrium compared with the right-handed ΔΔ-P. We also observed that the left-handed ΛΛ-P complex unthreads three times faster than ΔΔ-P. These results, along with a weaker binding affinity estimated for ΛΛ-P, suggest a preference in DNA binding to the chiral enantiomer having the same right-handed chirality as the DNA molecule, regardless of their common intercalating moiety. This comparison provides a better understanding of how chirality affects binding to DNA and may contribute to the development of enhanced potential cancer treatment drug designs.  相似文献   

13.
The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers.  相似文献   

14.
New chiral azoaromatic dendrimeric systems have been synthesized starting from 1,3,5‐benzenetricarbonyl trichloride as the core molecule. The simultaneous presence of the (S)‐3‐hydroxy pyrrolidinyl ring as the optically active moiety and the azobenzene donor‐acceptor conjugated system as the photochromic group with permanent dipole moment, makes these systems potentially interesting as materials for advanced applications in nanotechnologies. All the compounds obtained have been characterized with particular attention to the effects induced by changing the electron‐withdrawing group in the chromophoric moiety and to their optical activity. A strong nonlinear enhancement of chiroptical properties related to the number of chiral units linked to the symmetrical core is observed in these derivatives, which indicates the presence of conformationally chiral substructures. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Polarized light that is reflected or transmitted through chiral specimens can be used to detect and identify biological and chemical materials including human tissue. The determination of the silent footprints of the chiral properties of the biological materials on scattered polarized light is the basis for these investigations. It is of primary importance to identify which combinations of the elements of the Mueller matrix for reflected or for transmitted light can be used to determine the optical activity of the biochemical materials. The optical activity of chiral materials is characterized by optical rotation and circular dichroism. The explicit analytical dependence of these specific elements of the Mueller matrix, upon the angles of incidence and scatter, upon the wavelength and upon the type of chirality has the potential to provide experimentalists with guidance in determining the optimum use of optical polarimetric scatterometers. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
《IRBM》2008,29(2-3):89-104
The principle of molecular imprinting has repeatedly been proven a successful and effective means of creating sites of specific recognition within polymers. After almost three decades of development, we finally have some evidence of large molecule imprinting. In this review, the authors aim to bring the molecular imprinting community up-to-date. We describe here some of the new and innovative work that endeavours to take molecular imprinting away from its chromatographic, synthetic past and make use of this technique in new, exciting and developing fields, such as drug delivery, biotechnology, biosensors, protein/drug recognition and in the development of novel materials. The main discussion analyses a variety of different two-dimensional and three-dimensional approaches recently developed for the recognition of larger molecules or biomolecules, such as proteins, viruses and cells, and how the traditional imprinting methods have been adapted to suit the mass transfer requirements of these biological templates. We also review a relatively new technique that has emerged from the imprinting approach, which aims to develop novel materials from the imprints of biological materials.  相似文献   

17.
The anionic H2TPPS porphyrin and its copper derivative, CuTPPS, form in aqueous solution hetero-aggregates with the cationic H2T4 porphyrin and its copper derivative, CuT4. In the presence of poly-L-glutamate, at pH 4.0, a CD signal appears in the Soret region of the spectrum, indicating that the polypeptide has induced chirality into the structure of the aggregates. These species exhibit remarkable inertness due to the strength and number of the coulombic interactions between the anionic and the cationic porphyrins. This property allows them to preserve the chiral structure, even when the matrix changes or loses its chiral conformation, demonstrating that these aggregates are capable of memorizing the chiral information. The remarkable properties of the title systems may find various applications (chiral amplification, discrimination, and separation) that, on the other hand, require a more strict control of the aggregate dimension. Here, we show that the central copper of these macrocycles is crucial for determining the aggregate dimension.  相似文献   

18.
Xiao D  Wada T  Inoue Y 《Chirality》2009,21(1):110-113
In order to understand the roles of moderately organized media and the factors controlling the chirality transfer in supramolecular photochirogenesis, enantiodifferentiating photoisomerization of (Z)-cyclooctene to the chiral (E)-isomer (1E) has been performed for the first time in liquid crystal (LC) systems such as lyotropic LCs of poly(gamma-benzyl-L-glutamate) (PBLG), difluorobenzene derivatives mixture, and thermotropic cholesteryl oleyl carbonate LCs. Basically, the as-employed LCs provided small enantiomer excess (<5%). It is interesting that lyotropic PBLG LCs give contrasting results in cholesteric and nematic mesophases, revealing the importance of the relevant mesophase structure of LC. Selective excitation in achiral difluorobenzene LC doped with a chiral sensitizer facilitates us to conclude that the LC's chiral spatial arrangement is not sufficient or suitable to induce appreciable enantiomeric excess (ee) in the product, but the existence of molecular chirality (of a chiral sensitizer) is essential to afford an optically active (nonracemic) product at least in the present photosensitization system. The photosensitizations in thermotropic LCs further reveal that the product's ee can be manipulated by the LC mesophase not directly but through the sensitizer's conformational changes induced by the supramolecular interactions with the surrounding LC structure.  相似文献   

19.
Fluoroquinolones are popular class of antibiotics with distinct chemical functionality. Most of them are ampholytes with one chiral center. Stereogeneic center is located either in the side ring of Gatifloxacin (GFLX) or in the quinolone core of Ofloxacin (OFLX). These two amphoteric fluoroquinolones have terminal amino groups in common. The unusual Nadifloxacin (NFLX) is an acidic fluoroquinolone with a core chiral center. Owing to chirality and functionality differences among GFLX, OFLX, and NFLX, we mapped these enantiomers onto structure‐retention relationship. Amount of acetic acid modifier was studied in screened mobile phase and cellulose tris(3‐chloro‐4‐methyl phenyl carbamate) (Lux cellulose‐2) stationary phase. Experimental design of acetic acid% along with column temperature have been applied. Resolution and enantioselectivity have been related to structural features of the studied enantiomers. High amount of acid (0.4%) was optimum for the separation of either side chirality with a proximate amino group (GFLX) or core chirality without basic functionality (NFLX), while low amount (0.2%) is optimum for core chiral center with distal amino group (OFLX). Temperature has no significant effect on resolution and retention of enantiomers except for OFLX. Enantio‐retention explains possible chiral selective and nonselective interactions. The proposed methods have been validated for pharmaceutical analyses.  相似文献   

20.
With the development of protein engineering, protein expression, and nano(bio)technologies, the ability to use 20 or more amino acids to design and produce genetically engineered protein materials is now possible. Proteins derived from natural sources offer one route for the production of new materials and many have been modified or formulated for improved performance. The development of synthetic polymer systems provides a second route to new materials: the concept of using a library of monomers and having the methods to precisely order them to design and produce a new polymer is a long-sought objective of polymer scientists. Recent advances have been made in the development of synthetic proteins for novel applications. Insight into the structures of some of nature's most intriguing materials, such as diatom frustules, has revealed a major role for proteins in facilitating and templating inorganic composites resulting in the development of bio-inspired materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号