首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ω‐Hydroxyacids are fatty acids bearing a hydroxyl group on the terminal carbon. They are found in mammals and higher plants and are often involved in providing a permeability barrier, the primary purpose of which is to reduce water loss. Some ω‐hydroxyacid derivatives may be involved in waterproofing and signalling. The purpose of this review was to survey the known natural sources of ω‐hydroxyacids. ω‐Hydroxyacids are produced by two different P450‐dependent mechanisms. The longer (30–34 carbons) ω‐hydroxyacids are produced by chain extension from palmitic acid until the chain extends across the membrane in which the extension is taking place, and then the terminal carbon is hydroxylated. Shorter fatty acids can be hydroxylated directly to produce C16 and C18 ω‐hydroxyacids found in plants and 20‐eicosatetraenoic acid (20‐HETE) by a different P450. The C16 and C18 ω‐hydroxyacids are components of polymers in plants. The long‐chain ω‐hydroxyacids are found in epidermal sphingolipids, in giant‐ring lactones from the sebum of members of the equidae, as a component of meibum and in carnauba wax and wool wax.  相似文献   

2.
Short‐chain α‐(1,4)‐D ‐glucan samples were generated by debranching of potato amylopectin and fractionation on gel permeation chromatography. The collected fractions were gathered to generate two samples with an average DPn of 32 and 42, respectively. The samples were recrystallized at −80 and 1°C for three days (10%, w/w) and the resulting structures and related digestibility were assessed. The results revealed that the slowly digestible starch (SDS) content was affected by both chain length and recrystallization temperature. The highest SDS level (49%) was obtained at −80°C from the sample with the lowest average DPn. Its structure showed B‐type polymorphic crystallites with a substantial amorphous part and a melting temperature of 85°C. Such a melting temperature was close to that already reported in the literature and appears characteristic of recrystallized SDS structures.  相似文献   

3.
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu‐zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6‐O‐α‐Maltosyl‐β‐cyclodextrin (Malt‐β‐CD), a new kind of β‐CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt‐β‐CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt‐β‐CD complex was characterized by ultraviolet–visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt‐β‐CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt‐β‐CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt‐β‐CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.  相似文献   

4.
β‐Lactoglobulin in 50 mM Tris/HCl buffer at pH 7 was subjected to combined pressure and temperature treatments using a central composite experimental design. Pressures up to 294 MPa, temperatures up to 62 °C and processing times up to 30 min were studied. The molecular structure at the secondary and tertiary levels was analysed post‐processing using far‐ and near‐UV circular dichroism. It was found that, although the pressures applied were moderate, the far‐UV circular dichroism spectra showed important changes corresponding to an increase in α‐helix content. The tertiary structure was almost completely lost for the highest processing intensities. This suggests a transition to the molten globule state. The percentage change in molar ellipticity at 293 nm (tertiary structure) was found to be linearly connected to the three independent variables, hence possibly allowing process optimisation for that response. Pressure was found to be the most important parameter to bring about the molecular changes at the two molecular levels investigated. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
6.
This research was addressed to study the effect of lipid physical state on bleaching kinetics of β‐carotene. To this aim, β‐carotene was added to palm oil and palm stearin and the samples were stored at increasing temperatures allowing different degree of crystallization. Phase transition properties of palm derivatives were studied by differential scanning calorimetry and synchrotron X‐ray diffraction, whereas β‐carotene bleaching kinetics were followed by measuring color changes. Bleaching proceeded at comparable rate in palm oil and palm stearin containing systems stored at 20 and ?18 °C, whereas the color changes showed a maximum rate at 4 °C in palm stearin samples and at ?7 °C in palm oil systems. Arrhenius plot clearly highlighted deviations from the linearity underlining the crucial role of lipid physical properties in determining the bleaching rate. The location and the compartmentalization of β‐carotene in the fat lattice could affect its chemical stability.  相似文献   

7.
Abstract: Stability of entrapped crystalline β‐carotene as affected by water activity, solids microstructure, and composition of freeze‐dried systems was investigated. Aliquots (1000 mm3, 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040: DE6, M100: DE11, and M250: DE25.5), M100‐sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β‐carotene were frozen at ?20, ?40, or ?80 °C and freeze‐dried. Glass transition and α‐relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β‐Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β‐carotene stability. Small pores with thin walls and large surface area allowed β‐carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β‐carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β‐carotene degradation. Stability of dispersed β‐carotene was highest at around 0.2 aw, but decreasing structural relaxation times above the glass transition correlated well with the rate of β‐carotene degradation at higher aw. Microstructure, aw, and component mobility are important factors in the control of stability of β‐carotene in freeze‐dried solids Practical Application: β‐Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β‐carotene in freeze‐dried foods, the amount of oxygen penetration need to be limited. The modification of freeze‐dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β‐carotene in freeze‐dried solids.  相似文献   

8.
9.
β‐Glucans were isolated from six Greek barley cultivars (Persefoni, Kos, Thessaloniki, Athinaida, Dimitra and Triptolemos) by water extraction at 47 °C, enzymatic removal of starch and protein and subsequent precipitation of the water‐soluble β‐glucans with 37% (w/v) ammonium sulfate saturation. The purity of barley β‐glucans was high (>93% dry basis) with some small contamination by protein (<3.84%). The molecular size of the β‐glucan isolates was determined by high‐performance size‐exclusion chromatography (HPSEC); the weight‐average molecular weights and the intrinsic viscosities ranged between 0.45 × 106 and 1.32 × 106 and 2.77 and 4.11 dl g?1, respectively. Structural features of barley β‐glucans were revealed by 13C NMR spectroscopy and high‐performance anion‐exchange chromatography (HPAEC) of the oligomers released by the hydrolytic action of lichenase. Lichenase degradation showed that β‐glucans from all barley cultivars consisted of blocks of cellotriosyl and cellotetraosyl units, accounting for 90.6–92.3% of the total oligomers released, with a molar proportion of these units between 2.31 and 2.77. Rheological measurements of aqueous solutions/dispersions of β‐glucans showed the behaviour of non‐interacting polysaccharides and a transition from the typical viscoelastic response to gel‐like properties after a time period that depended on the molecular size of the polysaccharide. The lowest molecular size β‐glucans from the Triptolemos cultivar showed shorter gelation times than their higher molecular weight counterparts. The effect of sugar incorporation (glucose, fructose, sucrose, xylose and ribose), at a concentration of 30% (w/v), to the β‐glucans gels (6% w/v) on compression parameters seemed to be related to the type of sugar used; the pentose sugars substantially reduced gel firming. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
11.
In this work, crude polysaccharide extracts were extracted from pumpkin (Cucurbita moschata) fruit by hot water. After removal of proteins and purification, polysaccharides of pumpkin fruit (PP1‐1) were subjected to structural identification. Gas chromatography analysis indicated that PP1‐1 comprised of galactose (86.4%), and glucose (13.6%). The molecular weight of PP1‐1 was measured to be 0.87 × 104 Da by gel permeation chromatography. The inhibitory kinetic evaluation showed that it was non‐competitive inhibition of PP1‐1 on the α‐glucosidase‐catalysed hydrolysis of PNPG. The Michaelis–Menten constant (Km) was 0.106 m , and the inhibitory constants (Ki), 0.435 mg.  相似文献   

12.
High amylose corn starch (HACS) and potato starch were hydrolyzed by pancreatic α‐amylase in vitro. Residues after hydrolysis were collected and characterized for their physicochemical properties and molecular structure. Compared with raw starches, residues had lower apparent amylose contents and higher resistant starch contents. The gelatinization enthalpy of residues from HACS increased while enthalpy of residues from potato starch decreased from 15.4 to 11.3 J/g. Peak viscosity and breakdown values of the residues from potato starch were markedly decreased but final viscosity values did not show much change. Chain length distribution of debranched amylopectin from the residues indicated that the relative portion of short chain in the residue decreased for both starches. More molecules with intermediate chain length (DP 16—31) were found in residue after 48‐h hydrolysis of potato starch.  相似文献   

13.
14.
15.
Abstract: Galactooligosaccharides (GOSs) are nondigestible oligosaccharides and are comprised of 2 to 20 molecules of galactose and 1 molecule of glucose. They are recognized as important prebiotics for their stimulation of the proliferation of intestinal lactic acid bacteria and bifidobacteria. Therefore, they beneficially affect the host by selectively stimulating the growth and/or activity of a limited number of gastrointestinal microbes (probiotics) that confer health benefits. Prebiotics and probiotics have only recently been recognized as contributors to human health. A GOS can be produced by a series of enzymatic reactions catalyzed by β‐galactosidase, where the glycosyl group of one or more D‐galactosyl units is transferred onto the D‐galactose moiety of lactose, in a process known as transgalactosylation. Microbes can be used as a source for the β‐galactosidase enzyme or as agents to produce GOS molecules. Commercial β‐galactosidase enzymes also do have a great potential for their use in GOS synthesis. These transgalactosyl reactions, which could find useful application in the dairy as well as the larger food industry, have not been fully exploited. A better understanding of the enzyme reaction as well as improved analytical techniques for GOS measurements are important in achieving this worthwhile objective.  相似文献   

16.
To enhance the rehydration and palatability characteristics of extruded noodles, a new type of instant noodles with a well‐developed porous structure was successfully created by cooperating medium temperature α‐amylase (MTA) with extrusion technique. To explain the formation reason of the porous structure, a detailed mechanism analysis was firstly carried out. It turned out that a portion of starch was degraded into water‐soluble dextrin during the enzymatic extrusion treatment. Besides, a slight restriction of the excessive MTA on the starch gelatinisation was demonstrated. The appearance of the well‐developed porous structure was attributed to the leaching of dextrin and loosely bound starch fragments. Therefore, the extruded noodles with 0.40‰ MTA concentration were recommended based on the results of cooking quality, textural characteristics and sensory evaluation.  相似文献   

17.
Tea polyphenol (TP) inhibits digestive enzymes and reduces food digestibility. To explore the interaction between TP with digestive enzymes, bindings of ‐epigallocatechin‐3‐gallate (EGCG) to trypsin and α‐chymotrypsin were studied in detail using fluorescence, resonance light‐scattering, circular dichroism, fourier transform infrared spectroscopy methods and protein‐ligand docking. The binding parameters were calculated according to Stern–Volmer equation, and the thermodynamic parameters were determined by the van't Hoff equation. The results indicated that EGCG was capable of binding trypsin and α‐chymotrypsin with high affinity, resulting in a change of native conformation of these enzymes. EGCG had a greater influence on the structure of α‐chymotrypsin than trypsin. This study can be used to explain the binding interaction mechanism between TP and digestive enzymes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号