首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Favipiravir finished dosage was approved for emergency use in many countries to treat SARS-CoV-2 patients. A specific, accurate, linear, robust, simple, and stability-indicating HPLC method was developed and validated for the determination of degradation impurities present in favipiravir film-coated tablets. The separation of all impurities was achieved from the stationary phase (Inert sustain AQ-C18, 250 × 4.6 mm, 5-μm particle) and mobile phase. Mobile phase A contained KH2PO4 buffer (pH 2.5 ± 0.05) and acetonitrile in the ratio of 98:2 (v/v), and mobile phase B contained water and acetonitrile in the ratio of 50:50 (v/v). The chromatographic conditions were optimized as follows: flow rate, 0.7 mL/min; UV detection, 210 nm; injection volume, 20 μL; and column temperature, 33°C. The proposed method was validated per the current International Conference on Harmonization Q2 (R1) guidelines. The recovery study and linearity ranges were established from the limit of quantification to 150% optimal concentrations. The method validation results were found to be between 98.6 and 106.2% for recovery and r2 = 0.9995–0.9999 for linearity of all identified impurities. The method precision results were achieved below 5% of relative standard deviation. Forced degradation studies were performed in chemical and physical stress conditions. The compound was sensitive to chemical stress conditions. During the study, the analyte degraded and converted to unknown degradation impurities, and its molecular mass was found using the LC–MS technique and established degradation pathways supported by reaction of mechanism. The developed method was found to be suitable for routine analysis of research and development and quality control.  相似文献   

2.
A novel and automated, stability-indicating, reversed phase ultra performance liquid chromatography (UPLC) method was developed and validated for the quantitative determination of erdosteine, its known impurities and two novel degradation products in a new pharmaceutical dosage form (effervescent tablets). The chromatographic separations were performed on a Waters Acquity UPLC HSS T3, 1.8 µm (2.1 mm?×?150 mm, I.D.) stainless steel column. The mobile phase consisted of 0.1% TFA in water and methanol under gradient elution conditions, at a flow rate of 0.29 mL/min, for the assay and impurities analysis. UV detection was set at a wavelength of 238 nm. Erdosteine raw material, placebo and effervescent tablets were subjected to forced degradation. The new degradation products (labeled OX1 and OX2) were found after oxidative treatment and characterized by ultra performance liquid chromatography mass spectrometry. The validation parameters such as linearity, limit of detection (LOD) and quantification (LOQ), accuracy, precision, specificity and robustness were highly satisfactory for all analyzed compounds. LOD (0.020 and 0.011–0.385 µg/mL for erdosteine and impurities, respectively) and LOQ values show the high sensibility of the method. Specificity of the method was confirmed by testing the matrix components. The validated method demonstrated to be suitable for routine quality control purposes and for routine stability studies of erdosteine in effervescent formulations.  相似文献   

3.
A validated, specific, stability-indicating reversed-phase liquid chromatographic method has been developed for quantitative analysis of gatifloxacin, its degradation products, and its process-related impurities in bulk samples and in pharmaceutical dosage forms. Forced degradation of gatifloxacin bulk sample was conducted in accordance with ICH guidelines. Acidic, basic, neutral, and oxidative hydrolysis, thermal stress, and photolytic degradation were used to assess the stability-indicating power of the method. Substantial degradation was observed during oxidative hydrolysis. No degradation was observed under the other stress conditions. The method was optimized using samples generated by forced degradation and sample solution spiked with impurities. Good resolution of the analyte peak from peaks corresponding to process-related impurities and degradation products was achieved on a C18 column by use of a simple linear mobile-phase gradient prepared from mixtures of acetonitrile and an aqueous solution of sodium dihydrogen orthophosphate dihydrate and triethylamine adjusted to pH 6.5 with orthophosphoric acid. Detection was performed at 240 nm. Limits of detection and quantification were established for gatifloxacin and its process-related impurities. When the stressed test solutions were assayed by comparison with gatifloxacin working standard the mass balance was always close to 99.3%, indicating the method was stability-indicating. Validation of the method was performed in accordance with ICH requirements. The method was found to be suitable for checking the quality of bulk samples of gatifloxacin at the time of batch release and also during storage.  相似文献   

4.
A robust, specific, precise and sensitive high-performance liquid chromatographic method has been described for purity control of temocillin. Chromatographic separation was achieved using a Symmetry C18 (150 × 4.6 mm, 5 µm) column kept at 30 °C. The mobile phase consisted of a gradient mixture of mobile phases A (5 g/L solution of Na2HPO4·2H2O, pH 7) and B (ACN-MeOH-H2O, 50:10:40 v/v/v) pumped at a flow rate of 1.0 mL/min. UV detection was performed at 235 nm. The developed method was validated according to the ICH guidelines for its robustness, selectivity, sensitivity, precision and linearity. An experimental design was applied for the robustness study. Linearity was assessed both at impurity level in the range from LOQ to 10 % and assay level from 25 % to 150 % (0.6 mg/mL = 100 %). It is the first liquid chromatographic method described for the separation of temocillin and its potential impurities. It was possible to identify four degradation products from the forced degradation studies. The degradants do not interfere with the main peak and other known impurities showing that the method is specific and stability-indicating.  相似文献   

5.
A novel stability‐indicating reversed phase ultra‐high performance liquid chromatography (UPLC) coupled photodiode array gradient method was developed for determination of the nifedipine and related compounds. Furthermore, based on the chromatographic conditions and forced degradation studies performed through the development of the related substances method a UPLC isocratic method was validated for the determination of the assay of this active substance. An Acquity Shield RP18 (50 × 3.0 mm 1.7 µm) column was used for separation of nifedipine and its five potential impurities within 11 min, which is 5‐fold less than the official method. A mobile phase consisting of 10 mm ammonium formate (pH 4.5) and methanol, delivered at a flow rate 0.5 mL/min, was employed to achieve a minimum resolution of 2.0 for all consecutive pairs of compounds. The precision value expressed as percentage relative standard deviation for method repeatability and reproducibility was <5.0%. The recoveries for all the related compounds were in the range of 99–105.0%. Linearity was found to be acceptable over the concentration range of 0.25–1.5 µg/mL for nifedipine and its impurities. The limit of quantification for nifedipine was 0.05 µg/mL, which is much less than the European Pharmacopoeia method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A validated, specific, stability-indicating reversed-phase liquid chromatographic method has been developed for quantitative analysis of moxifloxacin and its related substances in bulk samples and pharmaceutical dosage forms in the presence of degradation products and process-related impurities. Forced degradation studies were performed on bulk samples of moxifloxacin, in accordance with ICH guidelines, using acidic, basic, and oxidizing conditions, and thermal and photolytic stress, to show the stability-indicating power of the method. Significant degradation was caused by oxidative stress and by basic conditions; no degradation was observed under the other stress conditions. The method was optimized by analysis of the samples generated during the forced degradation studies and sample solutions spiked with the impurities. Good resolution between the analyte peak and peaks corresponding to process-related impurities and degradation products was achieved on a C18 column with a simple linear mobile phase gradient prepared from aqueous sodium dihydrogen orthophosphate dihydrate containing triethylamine, pH adjusted to 3.0 with orthophosphoric acid, and methanol. Detection was performed at 240 nm. Limits of detection and quantification were established for moxifloxacin and its process related impurities. When the stressed test solutions were assayed against moxifloxacin working standard solution the mass balance was always between 99.3 and 100.1%, indicating the method was stability-indicating. The method was validated in accordance with ICH guidelines, and found to be suitable for checking the quality of bulk samples of moxifloxacin at the time of release of a batch and during storage (long term and accelerated stability testing was conducted).  相似文献   

7.
The design of an appropriate analytical method for assessing the quality of pharmaceuticals requires a deep understanding of science, and risk evaluation approaches are appreciated. The current study discusses how a related substance method was developed for Nintedanib esylate. The best possible separation between the critical peak pairs was achieved using an X-Select charged surface hybrid Phenyl Hexyl (150 × 4.6) mm, 3.5 μm column. A mixture of water, acetonitrile, and methanol in mobile phase-A (70:20:10) and mobile phase-B (20:70:10), with 0.1% trifluoroacetic acid and 0.05% formic acid in both eluents. The set flow rate, wavelength, and injection volumes were 1.0 ml/min, 285 nm, and 5 μl, respectively, with gradient elution. The method conditions were validated as per regulatory requirements and United States Pharmacopeia general chapter < 1225 >. The correlation coefficient for all impurities from the linearity experiment was found to be > 0.999. The % relative standard deviation from the precision experiments ranged from 0.4 to 3.6. The mean %recovery from the accuracy study ranged from 92.5 to 106.5. Demonstrated the power of the stability-indicating method through degradation studies; the active drug component is more vulnerable to oxidation than other conditions. Final method conditions were further evaluated using a full-factorial design. The robust method conditions were identified using the graphical optimization from the design space.  相似文献   

8.

A novel and selective stability-indicating liquid chromatographic method has been developed and validated for the analysis of dimethindene maleate, the related substance 2-ethylpyridine, and three degradation products. Dimethindene maleate was subjected to forced degradation study by acid and basic hydrolysis, oxidation, and thermal decomposition. Three degradation products that were formed during the forced degradation study were separated from dimethindene using a Zorbax SB CN column (150 × 4.6 mm; 5 μm); cyanopropyl-bonded stationary phase was applied for the first time for the separation of dimethindene and its impurities. The proposed method was validated and was found suitable for quality control and stability tests of pharmaceuticals containing dimethindene maleate.

  相似文献   

9.

A simple reverse phase liquid chromatographic method was developed for the quantitative determination of desipramine hydrochloride and its related impurities in bulk drugs which is also stability-indicating. During the forced degradation at hydrolysis, oxidative, photolytic and thermal stressed conditions, the degradation results were only observed in the oxidative stress condition. The blend of the degradation product and potential impurities were used to optimize the method by an YMC Pack Pro C18 stationary phase. The LC method employs a linear gradient elution with the water–acetonitrile–trifluoroacetic acid as mobile phase. The flow rate was 1.0 mL min−1 and the detection wavelength 215 nm. The stressed samples were quantified against a qualified reference standard and the mass balance was found close to 99.0% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. desipramine). The developed RP-LC method was validated in agreement with ICH requirements.

  相似文献   

10.
A novel, stability-indicating gradient reverse-phase ultra-performance liquid chromatographic method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in the presence of degradation products and process related impurities in combined dosage form. The method was developed using C18 column with mobile phase containing a gradient mixture of solvent A and B. The eluted compounds were monitored at 220 nm. Ibuprofen and diphenhydramine citrate were subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Major unknown impurity formed under oxidative degradation was identified using LC-MS-MS study. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantitation, accuracy, precision and robustness. The described method was linear over the range of 0.20-6.00 μg/mL (r>0.998) for Ibuprofen and 0.084-1.14 μg/mL for diphenhydramine citrate (r>0.998). The limit of detection results were ranged from 0.200-0.320 μg/mL for ibuprofen impurities and 0.084-0.099 μg/mL for diphenhydramine citrate impurities. The limit of quantitation results were ranged from 0.440 to 0.880 μg/mL for ibuprofen impurities and 0.258 to 0.372 μg/mL for diphenhydramine citrate impurities. The recovery of ibuprofen impurities were ranged from 98.1% to 100.5% and the recovery of diphenhydramine citrate impurities were ranged from 97.5% to 102.1%. This method is also suitable for the simultaneous assay determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms.  相似文献   

11.
The incidence of thrombotic complications in SARS-CoV-2 infections has become a global concern; thus, anticoagulants are an integral part of the treatment. Edoxaban (EDX) is an oral anticoagulant suitable for pharmacologic thromboprophylaxis. Herein, two novel analytical methods for EDX determination in tablets are developed and validated using capillary zone electrophoresis (CZE) and high-performance liquid chromatography (HPLC). Operating conditions such as the electrolyte's concentration and pH value, injection time, volume, and the capillary temperature, were optimized. The methods were successfully validated by establishing the linearity, intra- and inter-day precisions (relative standard deviation [%]), accuracy, and robustness. Adequate separation of excipients and degradation products of EDX generated by stress degradation conditions demonstrated the stability-indicating capability of the methods. The analytical procedures were linear in the range of 25–125 µg/ml (r > 0.999), with the limits of detection and quantification of 3.26 and 10.87 µg/ml for CZE and 0.740 and 2.78 µg/ml for HPLC. Although both methodologies are suitable for determining EDX in tablets, CZE provides a greener alternative due to low-cost analysis using less organic solvents and minimizing waste generation.  相似文献   

12.
A simple, eco-friendly, stability-indicating HPLC method was developed for the determination of donepezil hydrochloride (DH) in tablet dosage form in the presence of its pharmacopoeia-related compound (donepezil-related compound A) and its different degradation products. The chromatographic conditions were optimized to achieve the highest performance parameters using Zorbax Eclipse Plus C18 rapid resolution column (4.6?×?100?mm, 3.5?µm), with a mobile phase composed of 72.5% acetate buffer pH 5.5 and 27.5% ethanol, flowing at 1?mL?min?1. The diode array detector (DAD) was set at 315?nm and the column oven was adjusted at 45°C. Linear response (r?=?0.9999) was observed over the range of 2–28?µg?mL?1 of donepezil, with detection and quantitation limits of 0.031 and 0.103?µg?mL?1, respectively. Forced degradation studies were performed on standard DH and test Demepezil® 5-mg tablets under various conditions and the method was found to be stability indicating. The purity of DH peak was confirmed using the DAD. In the developed method, two principles of green chromatography were adopted (reduce and replace) by reducing solvent consumption through the utilization of a short column (10?cm) with a smaller particle size (3.5?µm) instead of a normal 25?cm with a 5?µm particle size and by replacing hazardous solvents of the official United States Pharmacopoeia method as acetonitrile with ethanol. Furthermore, the greenness of the method was assessed using three assessment tools.  相似文献   

13.

A new, sensitive, stability indicating gradient RP-LC related substances and assay method has been developed for the quantitative determination of entacapone in bulk drugs. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination of buffer and acetonitrile. Buffer consisted of 0.1% orthophosphoric acid, delivered in a gradient mode and quantitation was carried out using ultraviolet detection at 220 nm with a flow rate of 1.5 mL min−1. In the developed LC method the resolution (R s ) between entacapone and its three potential process impurities were found to be >2.0. Regression analysis showed an r 2 value (correlation coefficient) >0.99 for entacapone and its three potential impurities. This method was capable to detect all three process impurities of entacapone at a level of 0.003% with respect to test concentration of 0.5 mg mL−1 for a 20 μL injection volume. The inter- and intra-day precision values for all three impurities and for entacapone was found to be within 2.0% RSD. The method has shown good and consistent recoveries for entacapone in bulk drugs (99.2–101.5%) and its three impurities (99.5–102.2%). The test solution was found to be stable in diluent for 48 h. The drug substances were subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in acid stress, base stress and oxidative conditions. The stressed test solutions were assayed against the qualified working standard of entacapone and the mass balance in each case was close to 99.7% indicating that the developed method was stability-indicating. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.

  相似文献   

14.
A new, sensitive, stability indicating gradient RP-LC related substances and assay method has been developed for the quantitative determination of entacapone in bulk drugs. Efficient chromatographic separation was achieved on a C18 stationary phase with simple mobile phase combination of buffer and acetonitrile. Buffer consisted of 0.1% orthophosphoric acid, delivered in a gradient mode and quantitation was carried out using ultraviolet detection at 220 nm with a flow rate of 1.5 mL min?1. In the developed LC method the resolution (R s ) between entacapone and its three potential process impurities were found to be >2.0. Regression analysis showed an r 2 value (correlation coefficient) >0.99 for entacapone and its three potential impurities. This method was capable to detect all three process impurities of entacapone at a level of 0.003% with respect to test concentration of 0.5 mg mL?1 for a 20 μL injection volume. The inter- and intra-day precision values for all three impurities and for entacapone was found to be within 2.0% RSD. The method has shown good and consistent recoveries for entacapone in bulk drugs (99.2–101.5%) and its three impurities (99.5–102.2%). The test solution was found to be stable in diluent for 48 h. The drug substances were subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in acid stress, base stress and oxidative conditions. The stressed test solutions were assayed against the qualified working standard of entacapone and the mass balance in each case was close to 99.7% indicating that the developed method was stability-indicating. The developed RP-LC method was validated with respect to linearity, accuracy, precision and robustness.  相似文献   

15.
A novel and selective stability-indicating liquid chromatographic method has been developed and validated for the analysis of dimethindene maleate, the related substance 2-ethylpyridine, and three degradation products. Dimethindene maleate was subjected to forced degradation study by acid and basic hydrolysis, oxidation, and thermal decomposition. Three degradation products that were formed during the forced degradation study were separated from dimethindene using a Zorbax SB CN column (150 × 4.6 mm; 5 μm); cyanopropyl-bonded stationary phase was applied for the first time for the separation of dimethindene and its impurities. The proposed method was validated and was found suitable for quality control and stability tests of pharmaceuticals containing dimethindene maleate.  相似文献   

16.
A stability-indicating liquid chromatographic method has been developed for the quantitative determination of lodenafil carbonate in tablets. The method employs a Synergi Fusion C18 column (250 × 4.6 mm, i.d., 4 μm particle size), with mobile phase consisting of a mixture of methanol-acetic acid 0.1% pH 4.0 (65:35, v/v) and UV detection at 290 nm, using a photodiode array detector. A linear response (r = 0.9999) was observed in the range of 10-80 μg/mL. The method showed good recoveries (average 100.3%) and also intra and inter-day precision (RSD < 2.0%). Validation parameters as specificity and robustness were also determined. Specificity analysis showed that no impurities or degradation products were co-eluting with the lodenafil carbonate peak. The method was found to be stability-indicating and due to its simplicity and accuracy can be applied for routine quality control analysis of lodenafil carbonate in tablets.  相似文献   

17.
A simple stability-indicating RP-HPLC method was developed and validated for quantification of amlodipine, atorvastatin, and its impurities on Waters HPLC using Unisol C18 5?µm, 250?×?4.6?mm column in their combined tablet dosage as per ICH guidelines. The gradient (T/%B) at 0/42, 18/42, 22/75, 30/75, 32/42, and 35/42 of 40?mM 4.7 pH ammonium acetate as mobile phase A and acetonitrile as mobile phase B of flow rate 1.5?mL/min and 240?nm wavelength. Peak purity compiled for amlodipine and atorvastatin in all stressed conditions. For impurities: Precision was found in between 1.5 and 3.6%. The limit of detection and quantification for amlodipine, amlodipine impurity A, and atorvastatin was found to be 0.06 and 0.18?µg/mL, for atorvastatin Impurity A, B, C, and H was determined as 0.04 and 0.11?µg/mL, for Atorvastatin Impurity D was measured as 0.11 and 0.28?µg/mL, respectively. The linear regression achieved >0.9999 from 0.22 to 7.5?µg/mL. Recovery was observed in between 97 and 101%. For assay: Precision was determined in between 0.1 and 0.2%. The linear regression achieved >0.9999 for amlodipine and atorvastatin. Recovery ranged from 100 to 101%. The validated method was found to be accurate, precise, reliable, and robust to determine the assay as well as impurities in amlodipine–atorvastatin combination dosage formulation.  相似文献   

18.
Montelukast sodium (MLS) is a leukotriene receptor antagonist drug used in the treatment of asthma, bronchospasm, allergic rhinitis and urticaria. A reversed-phase high performance liquid chromatography method was developed to separate, identify and quantitative determination of MLS and its eight known organic impurities in tablet dosage form using a C18 column and mobile phases consisting of a gradient mixture of pH 2.5 phosphate buffer and acetonitrile. The stability-indicating character of the developed method was proven using stress testing (1 m HCl at 80°C/30 min, 1 m NaOH at 80°C/30 min, H2O at 80°C/30 min, 3% H2O2 at 25°C/1 min, dry heat at 105°C/10 h and UV–vis light/4 days) and was validated for specificity, quantitation limit, linearity, precision, accuracy and robustness. For MLS and its eight known impurities, the quantitation limits, linearity and recoveries were 0.015–0.03 μg/ml, correlation coefficient > 0.997 (R2 > 0.995) and 85.5–107.0%, respectively. The developed chromatographic method is suitable for impurity profiling and also for assay determination of MLS in bulk drugs and pharmaceutical formulations. The mass values (m/z) of newly formed degradation products (DP1 and DP2) of montelukast sodium were identified using liquid chromatography–mass spectrometry.  相似文献   

19.
Gundecha  Satyam  Patel  Mital  Mayur  Y. C. 《Chromatographia》2022,85(7):575-588

Pharmaceutical regulators are worried about medication quality and stability since drug degradation may result in harmful chemicals. Erlotinib (ERL) is a tyrosine kinase inhibitor associated with the epidermal growth factor receptor (EGFR) containing susceptible functional groups such as quinazoline and amine ketone, methoxy, and ethoxy leads to a reduction in pharmaceutical quality. According to the ICH-Q1A (R2) guideline, the goal of ERL stability studies is to establish its susceptibility to degradation under various environmental conditions. A novel isocratic stability–indicating liquid chromatography method has been developed using systemic quality by design (QbD) approach. The QbD strategy includes screening and optimization as phases. Placket Burman was used for primary parameters screening, and critical factors were optimized with response surface design. The prepared degradation samples (acid, base, neutral hydrolysis, oxidative, photolytic, and thermal) were separated using a Shimadzu GIST C18 column (250 mm?×?4.6 mm, 5 µm) with 15 mM ammonium formate: ACN (58:42% v/v) as mobile phase, 0.9 mL/min flow rate, and 246 nm wavelength, which was found to be LC–MS compatible. A total of six degradation products (DPs) were identified with the optimized chromatography method. The drug was sensitive toward acidic and basic hydrolysis, but it remained stable under neutral, oxidative, thermal, and photolytic stress conditions. The optimized method was sensitive, specific, and robust, with linearity ranging from 10 to 35 µg/mL, with a correlation coefficient (R2?=?0.9997). The analytical method greenness score was calculated and observed that the developed method is green.

  相似文献   

20.
Aksoy  B.  K&#;&#;&#;kg&#;zel  &#;.  Rollas  S. 《Chromatographia》2007,66(1):57-63

The objective of the current study was the development and subsequent validation of a simple, sensitive, precise and stability-indicating reversed-phase HPLC method for the determination of ciprofloxacin HCl in pharmaceutical dosage forms in the presence of its potential impurities. The chromatographic separation of ciprofloxacin HCl and its related compounds was achieved on an Inertsil ODS3 column using UV detection. The optimized mobile phase consisted of phosphoric acid solution: acetonitril. The proposed method provided linear responses within the concentration range 250–750 μg mL−1 for ciprofloxacin HCl and 0.5–1.5 μg mL−1 for its related compounds. LOD and LOQ values for the active substance were 5.159 and 15.632 μg mL−1, respectively. Correlation coefficients (r) of the regression equations for the impurities were greater than 0.99 in all cases. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 1% in all instances. No interference from any components of pharmaceutical dosage forms or degradation products was observed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号