首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以高岭土、乙酸锌、氢氧化钠为复合催化剂,通过复合催化体系合成了己内酰胺改性可发性酚醛树脂.采用DSC,IR等技术对其进行了表征.之后制得新型改性酚醛树脂泡沫材料.通过DSC进一步研究改性可发性酚醛树脂的固化反应动力学,运用Kissinner方程求出活化能、斜率和相关系数等动力学参数,结果表明己内酰胺改性后的酚醛树脂固化过程中有新的固化反应参与,一定程度上增加了反应活化能,而这恰恰有助于解决在树脂实际应用过程中固化速度过快的问题.此外,研究了己内酰胺改性后酚醛树脂泡沫材料的表观密度、质量磨耗率与发泡形态等因素;确定了己内酰胺改性酚醛泡沫材料的优化发泡工艺.  相似文献   

2.
840S环氧树脂体系固化反应特性   总被引:5,自引:0,他引:5       下载免费PDF全文
用差示扫描量热法(DSC) 在动态条件下对840S 环氧树脂体系的固化反应动力学进行了研究。根据所测量的不同升温速率的DSC 曲线, 运用温度升温速率( T-β) 图外推法得到该环氧树脂体系的固化工艺参数, 即凝胶化温度、固化温度、后处理温度, 这些温度参数为制定合理的固化工艺提供了理论基础。采用Kissinger 方程和Crane 方程计算该840S 环氧树脂体系的动力学参数, 即表观活化能Ea 、表观频率因子A 和反应级数n 。根据所计算的动力学参数, 建立了该840S 环氧树脂体系的固化动力学模型。利用所建立的固化动力学模型分别预测了等温和动态条件下840S 环氧树脂体系的固化反应特性。   相似文献   

3.
基于非等温法的耐高温环氧树脂体系固化反应动力学研究   总被引:1,自引:0,他引:1  
采用不同升温速率下的非等温DSC研究一种TR1219B耐高温环氧树脂体系的固化反应,分别通过n级反应模型和Malek最大概然机理函数法确定固化反应机理函数,求解固化反应动力学参数,得到固化反应动力学模型。结果表明:通过Kissinger和Crane方法求解动力学参数所得到的n级反应模型与实验值差别较大;采用Malek方法判别机理表明,该固化反应按照自催化反应机理进行,实验得到的DSC曲线与模型计算所得到的曲线吻合良好,所确立的模型在5~20K/min的升温速率下能较好地描述该环氧体系的固化反应过程。  相似文献   

4.
徐艺  贺强 《材料导报》2018,32(Z1):529-531, 538
采用非等温DSC法对高温固化胶膜(METLBOND 1515-4)的固化反应热行为以及固化动力学进行了研究,分别利用Kissinger和Ozawa动力学模型计算得到各体系固化反应的表观活化能,分别为90.2kJ/mol、92.7kJ/mol。通过Crane模型计算出固化反应级数,得出了适于该树脂体系固化反应过程的动力学方程。结果表明,体系中只有一种反应,该胶膜的反应级数为0.95。此外,基于得到的动力学参数,结合体系固化反应特点,预测了其固化时间,从而确定了胶膜固化工艺。本文为该环氧胶膜的固化、性能测试和应用提供了理论依据。  相似文献   

5.
非等温DSC法研究高韧性低收缩环氧体系固化动力学   总被引:7,自引:0,他引:7  
采用非等温DSC法对一种高韧性低收缩环氧树脂体系(E-51/E-20/DAMI)固化动力学进行了研究。分别通过n级反应模型法和自催化模型法得到了固化反应动力学方程。结果表明,n级反应方程与实验值差别较大;而采用Malek判据判别该固化反应按自催化反应机理进行,并通过"单点非模型"拟合法求解动力学参数,模型计算曲线与DSC实验曲线基本吻合。但由于动力学控制和扩散控制竞争关系的改变,随升温速率的提高,实验曲线逐渐偏离模型曲线,体系的总放热焓变小。所确立的模型在5K/min~25K/min的升温速率下能较好地描述E-51/E-20/DAMI体系的固化反应过程。  相似文献   

6.
采用非等温差示扫描量热法(DSC)研究沥青-环氧树脂复合材料(EA)的固化反应动力学。分别采用n级反应模型和自催化反应模型对其固化反应动力学参数进行求解,并得到固化反应动力学方程,通过T~β外推法确定EA的固化工艺和最佳固化温度。分析结果表明,自催化反应模型在5~25℃/min升温范围内更适合描述EA体系的反应动力学;该体系的最佳固化条件应为:在130℃固化2h,在160℃固化3h。  相似文献   

7.
3221中温固化环氧树脂体系的固化反应   总被引:11,自引:0,他引:11  
采用DSC方法研究了不同固化体系对3221环氧树脂固化体系固化反应的影响,探讨了反应机理,分析了双氰胺及双氰胺 取代脲作为固化剂的反应动力学,预测了氰胺 取代脲固化体系的固化工艺参数,并加以验证。结果表明,采用双氰胺 取代脲的复合固化体系能使3221体系的表观活化能Ea比单独使用双氰胺时降低58 kJ/m o l,前者固化温度比后者降低50℃左右,并能使反应缓和。  相似文献   

8.
采用非等温DSC法探讨了酚醛树脂与双马来酰亚胺体系的固化反应,在30 ℃~400 ℃范围内以不同升温速率(5 ℃/min、10 ℃/min、15 ℃/min、20 ℃/min)进行动态固化行为分析.应用Kissinger、Crane和Ozawa法求得了固化反应的表观活化能、固化反应级数、凝胶温度和固化温度等动力学参数.结果表明,固化体系的平均表观活化能为109 kJ/mol,反应级数为0.94,凝胶温度Tgel为79.68 ℃,固化温度Tcure为121.93 ℃,表观活化能E是固化度α的增函数.  相似文献   

9.
典型双马来酰亚胺树脂固化动力学模型的研究   总被引:9,自引:0,他引:9       下载免费PDF全文
对由二苯甲烷双马来酰亚胺与二烯丙基双酚A体系制得的典型双马来酰亚胺树脂体系的固化动力学模型进行研究,目前国内绝大多数双马来酰亚胺树脂体系都是在此基础上改性得到的。并采用DSC方法研究典型双马来酰亚胺树脂的固化过程,用恒温和动态两种方法分析其固化反应。根据自催化与n级反应方程,采用least-squares方法和Kissinger方法进行数据处理,建立该树脂体系的固化动力学模型并确定其固化动力学参数,此模型与实验结果具有良好的吻合性。同时该模型揭示了典型双马来酰亚胺树脂体系的固化反应是按不同机理分段进行的,在反应过程中由自催化模型转变为n级反应模型。此模型为合理的研究双马来酰亚胺树脂体系的工艺参数,保证产品质量以及工艺优化提供了必要的前提条件。   相似文献   

10.
利用差示扫描量热(DSC)分析技术研究了不同邻对位比值(O/P值)的酚醛树脂的固化活化能及固化进程。采用Ozawa模型求解了不同O/P值酚醛树脂的固化活化能及固化动力学参数,结果表明,酚醛树脂的固化活化能随其O/P值的增加而降低,固化进程变得更加容易。固化反应过程中的Ozawa反应指数n0随着固化反应温度的升高而下降,并且随着树脂O/P值的增加,n0出现在更低的温度区间内。Ozawa反应速度常数k0在固化反应初期随温度的升高而增加,在反应后期则随着温度的升高而下降,并且随着树脂O/P值的增加,k0出现峰值对应的温度降低,表明固化先后经历了微凝胶增长与扩散反应控制两个阶段,树脂O/P值的增加加快了微凝胶的增长进程。  相似文献   

11.
采用动态差示扫描量热(DSC)法,研究了用于CIRTM工艺的E-44/GA327(DDM改性芳胺)环氧体系和苯并噁嗪酚醛树脂的固化过程,以及升温速率对固化体系DSC曲线的影响,并采用最佳固化温度外推法确定了两种树脂的最佳共固化制度。结果表明,苯并噁嗪固化反应表观活化能Ea为70.35kJ/mol,表观指前因子A为1.27×107s-1,反应级数n为0.897;E-44/GA327体系固化反应表观活化能Ea为44.04kJ/mol,表观指前因子A为1.78×104s-1,反应级数n为0.884。两种树脂的最佳共固化制度为140℃/240min+180℃/240min,按所确定的共注射树脂的固化工艺制备了浇铸体,苯并噁嗪和E-44/GA327的固化度分别达到了96.7%和98.3%,固化物力学性能良好,验证了固化工艺的合理性。  相似文献   

12.
采用非等温差示扫描量热(DSC)对多官能团环氧树脂体系固化反应进行了研究,确定了环氧树脂所用固化剂为甲基纳迪克酸酐(MNA)。对AG-70/MNA/2-乙基-4-甲基咪唑(EMI-2,4)环氧树脂体系在不同升温速率下的固化反应进行测试,根据DSC曲线,用温度-升温速率外推法,求出环氧树脂体系的三个特征温度,温度参数能为...  相似文献   

13.
603环氧树脂体系固化动力学模型的建立与验证   总被引:2,自引:0,他引:2       下载免费PDF全文
采用非等温差示扫描量热法(DSC)研究了603热塑增韧环氧树脂体系的固化反应动力学。研究发现,在低升温速率测试条件下603环氧树脂体系固化反应的DSC曲线有两个重叠的放热峰,通过分离两个重叠的放热峰,研究了603环氧树脂体系固化动力学的特性。利用Kissinger方法和Kamal方程分别拟合得到603树脂体系固化反应的活化能和固化动力学参数,选择三种典型固化工艺制度下预测的树脂固化反应结果与实验数据对比,验证了所建立动力学模型的可靠性。基于不同升温速率的放热曲线,通过外推法得出该树脂占总反应比例70%的第一个反应固化温度为(177.3±2.2)℃,占总反应比例30%的第二个反应的起始温度和固化温度分别为(178.6±0.7)℃和(216.9±1.7)℃。研究结果对于多组分热固性树脂体系固化动力学的分析和复合材料成型工艺的优化具有重要的指导意义。  相似文献   

14.
E 51环氧树脂固化反应中动力学转变   总被引:3,自引:0,他引:3  
采用等温DSC法研究了E-51环氧树脂与4, 4’-二氨基二苯基砜(DDS)体系的固化反应过程, 并与已有固化模型拟合得到了170、180、190、200 ℃下的等温固化反应动力学的参数, 根据决定系数R2确定了适合的固化模型。研究表明: 当固化度小于40%时属于Kamal自催化模型; 当固化度大于40%时属于n级固化模型, 即固化反应由Kamal自催化反应向n级反应转变。   相似文献   

15.
采用非等温差示扫描量热(DSC)法分别对环氧树脂(EP)及可膨胀石墨/环氧树脂(EG/EP)体系的固化过程进行了研究。利用Kissinger和Crane法计算得到两种体系固化反应的表观活化能Ea、指前因子A、固化反应级数n等动力学参数,建立了固化反应动力学方程,并用T-β外推法确定了固化工艺温度。结果表明,EG的加入,降低了EP体系固化反应的完全程度,对固化反应时间的影响不大,体系的Ea由63.15 kJ/mol升高到65.89 kJ/mol,A由2.02×107提升到4.5×107,两种体系的反应级数基本一致,同时,EG的加入对体系固化工艺温度影响不大。  相似文献   

16.
等温DSC法研究RFI用环氧树脂固化动力学   总被引:12,自引:0,他引:12       下载免费PDF全文
为了预测固化反应的进程,采用STA 449C型差示扫描量热仪,用等温DSC法研究了室温下成膜、中温固化的RFI工艺用(E-44/E-21(6/4,质量比))/GA-327=100/40(质量比)环氧树脂体系在80、90、100、110、120℃下的固化过程,通过Matlab数据拟合良好性统计法得到了n级固化模型、自催化模型及复合模型方程中的各个参数值。根据R2和离差平方和SSE确定了适合的动力学模型。研究表明:该树脂体系的固化反应具有自催化和扩散控制的特征,低温下受扩散控制的影响更大;该体系的固化反应动力学符合自催化反应动力学模型,其表观活化能Ea为56.7kJ/mol,指前因子A为1.18×107 s-1,固化反应的反应级数m、n分别为0.529和1.561。   相似文献   

17.
丁镠  杨继萍  陈功  李红  苏航 《复合材料学报》2017,34(10):2150-2155
将自制咪唑衍生物EGE-2MI作为双氰胺-环氧树脂体系的促进剂,研究了其固化过程及室温储存性能。采用DSC法研究了该环氧树脂体系的固化反应动力学,确定了其最佳固化工艺参数;通过DSC测试室温存放不同时间后该环氧树脂体系的热焓值变化来确定其室温存储期;并测试了其中温固化产物的力学性能。结果表明:EGE-2MI质量比为0.6%~1.8%(环氧树脂为100%)的双氰胺-环氧树脂体系可以满足115~125℃固化,在室温下可以存放35天以上,EGE-2MI质量分数为1.8%时,该环氧树脂体系的活化能为87.23kJ/mol;固化后产物的铝-铝搭接剪切强度达到21.3 MPa,浇注体的室温拉伸强度在40 MPa以上。  相似文献   

18.
采用动态DSC法,研究了高韧性双马来酰亚胺树脂的固化反应动力学。根据Kissinger方程和Crane方程,拟合得到双马来酰亚胺树脂的固化动力学参数,建立了该树脂的唯象模型。采用恒温DSC法,根据DiBenedetto方程,建立了双马来酰亚胺树脂的玻璃化转变温度与固化度之间的函数关系。采用凝胶盘法,获得了该树脂在不同温度下的凝胶时间,建立了凝胶时间和凝胶温度之间的函数关系,得到了树脂的时间-温度-转变(TTT)图。根据TTT图对复合材料的固化工艺进行优化。结果表明:预浸料在150℃恒温0.5 h后加压0.6 MPa,树脂具有一定的流动性,可制备内部质量完好的复合材料。   相似文献   

19.
通过溶剂法设计合成出了结构中含有硅元素的新型苯并噁嗪单体(Si-BOZ),以其作为改性体系对双马来酰亚胺树脂(BMI)进行共混改性,在降低BMI预聚物粘度的同时优化其固化工艺,改善其综合性能。选用平板小刀法测定了Si-BOZ、BMI、Si-BOZ/BMI等树脂体系的凝胶时间,红外光谱(FTIR)跟踪研究了Si-BOZ和BMI在固化过程中所发生的化学反应,非等温差示扫描量热法(DSC)研究了Si-BOZ/BMI树脂体系的固化反应动力学特征,并通过Kissinger法和Ozawa法对两者固化过程中的各参数进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号