首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this paper, the method of tuning the resonant frequency of a micro-resonant clamped–clamped beam has been successfully applied to a MEMS capacitive magnetometer. The resonant structure frequency, which presents the vital component of the sensor, was tuned by applying a bias voltage between the interdigitated capacitive comb-fingers in order to control its spring constant. It has been proved that an applied DC voltage increases the structure stiffness and as a result the resonance frequency to higher values, especially for low motion magnitude. The shifting causes were described through an accurate analytic analysis using the generated electrostatic force between movable and fixed combs, and thereafter have been proved by characterization. The measured resonance frequency of the clamped–clamped beam structure was changed by up to 38 % from the original value (around 18.2 kHz) when a bias voltage of 52 V was applied. Tuning the resonant frequency of the resonating structure has many advantages for the magnetometer since it can serve as a feedback mechanism for error compensation.

  相似文献   

2.
Resonant Magnetic Field Sensor With Frequency Output   总被引:1,自引:0,他引:1  
This paper presents a novel type of resonant magnetic field sensor exploiting the Lorentz force and providing a frequency output. The mechanical resonator, a cantilever structure, is embedded as the frequency-determining element in an electrical oscillator. By generating an electrical current proportional to the position of the cantilever, a Lorentz force acting like an additional equivalent spring is exerted on the cantilever in the presence of a magnetic field. Thus, the oscillation frequency of the system, which is a function of the resonator's equivalent spring constant, is modulated by the magnetic field to be measured. The resonant magnetic field sensor is fabricated using an industrial CMOS process, followed by a two-mask micromachining sequence to release the cantilever structure. The characterized devices show a sensitivity of 60 kHz/Tesla at their resonance frequency$f_0= 175~ kHz$and a short-term frequency stability of 0.025 Hz, which corresponds to a resolution below 1$~mu T$. The devices can thus be used for Earth magnetic field applications, such as an electronic compass. The novel resonant magnetic field sensor benefits from an efficient continuous offset cancellation technique, which consist in evaluating the frequency difference measured with and without excitation current as output signal. 1676  相似文献   

3.
This paper reports a novel dual-axis microelectromechanical systems (MEMS) capacitive inertial sensor that utilizes multi-layered electroplated gold. All the MEMS structures are made by gold electroplating that is used as a post complementary metal-oxide semiconductor (CMOS) process. Due to the high density of gold, the Brownian noise on the proof mass becomes lower than those made of other materials such as silicon in the same size. The single gold proof mass works as a dual-axis sensing electrode by utilizing both out-of-plane (Z axis) and in-plane (X axis) motions; the proof mass has been designed to be 660 μm × 660 μm in area with the thickness of 12 μm, and the actual Brownian noise in the proof mass has been measured to be 1.2 \({\upmu}{\text{G/}}\sqrt {\text{Hz}}\) (in Z axis) and 0.29 \({\upmu}{\text{G/}}\sqrt {\text{Hz}}\) (in X axis) at room temperature, where 1 G = 9.8 m/s2. The miniaturized dual-axis MEMS accelerometer can be implemented in integrated CMOS-MEMS accelerometers to detect a broad range of acceleration with sub-1G resolution on a single sensor chip.  相似文献   

4.
A novel CMOS integrated Micro-Electro-Mechanical capacitive pressure sensor in SiGe MEMS (Silicon Germanium Micro-Electro-Mechanical System) process is designed and analyzed. Excellent mechanical stress–strain behavior of Polycrystalline Silicon Germanium (Poly-SiGe) is utilized effectively in this MEMS design to characterize the structure of the pressure sensor diaphragm element. The edge clamped elliptic structured diaphragm uses semi-major axis clamp springs to yield high sensitivity, wide dynamic range and good linearity. Integrated on-chip signal conditioning circuit in 0.18 μm TSMC CMOS process (forming the host substrate base for the SiGe MEMS) is also implemented to achieve a high overall gain of 102 dB for the MEMS sensor. A high sensitivity of 0.17 mV/hPa (@1.4 V supply), with a non linearity of around 1 % is achieved for the full scale range of applied pressure load. The diaphragm with a wide dynamic range of 100–1,000 hPa stacked on top of the CMOS circuitry, effectively reduces the combined sensor and conditioning implementation area of the intelligent sensor chip.  相似文献   

5.
The purpose of this paper is based on micro fabrication technology, while integrating planar waveguide technology and the scattering phenomenon generated by electro-statically actuator thin film, to develop a 2-dimensional display technology capable of being cleared and re-displayed. For thin film displacement, the restoration of inward elasticity needs to be overcome. During thin film displacement, attraction due to suction occurs when coming into contact with light waveguide; electrostatic force and elastic force are restored and mutually balanced, causing display to light up. On the other hand, when input voltage is released, electrostatic force stops and thin film is restored to original position, causing display to darken. The design structure uses SU-8 as supporting posts, and PDMS as the electrostatic thin film suspended above the glass substrate (light waveguide). The experimental results show that a waveguide with an electrode length of 250 μm (sub-pixel length), a micro-post height of 27 μm, and a PDMS film thickness of 16 μm requires an actuator voltage of 314 V; and a micro-post height of 27 μm, and a PDMS film thickness of 8 μm requires an actuator voltage of 189 V. Thus, with an arrayed micro-electrode design, electronic paper and panels with large color display area could be manufactured.  相似文献   

6.
A resonant magnetic field microsensor based on Microelectromechanical Systems (MEMS) technology including a piezoresistive detection system has been designed, fabricated, and characterized. The mechanical design for the microsensor includes a symmetrical resonant structure integrated into a seesaw rectangular loop (700 μm × 450 μm) of 5 μm thick silicon beams. An analytical model for estimating the first resonant frequency and deflections of the resonant structure by means of Rayleigh and Macaulay's methods is developed. The microsensor exploits the Lorentz force and presents a linear response in the weak magnetic field range (40–2000 μT). It has a resonant frequency of 22.99 kHz, a sensitivity of 1.94 V T?1, a quality factor of 96.6 at atmospheric pressure, and a resolution close to 43 nT for a frequency difference of 1 Hz. In addition, the microsensor has a compact structure, requires simple signal processing, has low power consumption (16 mW), as well as an uncomplicated fabrication process. This microsensor could be useful in applications such as the automotive sector, the telecommunications industry, in consumer electronic products, and in some medical applications.  相似文献   

7.
In this paper a novel single-chip microelectromechanical systems (MEMS) capacitive fingerprint sensor with slotted membrane is developed to improve the sensitivity. The capacitive sensor consists of a thin, flexible membrane and a rigid back plate with air gap. In this study with making slots in upper electrode to decrease the mechanical stiffness of the membrane, using proportional T-shaped protrusion on diaphragm in order to concentrate the force from finger ridges, making holes in lower electrode to reduce the air damping and using low stress material for diaphragm, we have been succeeded to design a novel MEMS fingerprint sensor with high sensitivity compared with the previous works (Sato et al., IEEE Trans Electron Devices 52:1026–1032, 2005; Damghanian and Majlis, 2008 IEEE International Conference on Semiconductor Electronics (ICSE 2008), pp 634–638 2008). The behaviors of the fingerprint sensor with clamped and slotted membranes are analyzed using the finite element method (FEM). The results yield a sensitivity of 1.44 fF/Mpa for the clamped and 3.22 fF/Mpa for the slotted fingerprint sensor with a 50 × 50 μm2 diaphragm. The sensitivity of the slotted structure is increased 2.236 times.  相似文献   

8.
We present an advanced RMS voltage sensor based on a variable parallel-plate capacitor using the principle of electrostatic force. The device is fabricated in a micromechanical surface process with a high-aspect ratio actuator, reinforced by copper electroplating employing a sacrificial photo-resist layer. Another copper layer with a coplanar waveguide below the actuator provides separated excitation and sensing electrodes. Flip-chip technology is employed for low-loss electrical connectivity. The presented design has a plate area of up to 3 × 3 mm2 and an initial gap distance of only 1.5 μm. We present results achieving a pull-in voltage below 1 V at frequencies from DC up to 1 GHz and sensitivities up to 1 fF/mV.  相似文献   

9.
The self-assembling of three-dimensional (3-D) MEMS from polysilicon surface micromachined part is very attractive. To avoid risky external manipulation, the practical use of integrated actuator to perform the assembling task is required. To that goal, this paper presents detailed characteristics of the electrostatic surface micromachined scratch drive actuator (SDA). First, from numerous SDA tests, it is shown that this actuator is able to produce a threshold force of 30 μN, with a yield above 60%. With polysilicon devices consisting of SDA mechanically linked to buckling beam, a horizontal force of 63 mN has been demonstrated with ±112 V pulse, and up to 100 μN can be obtained with higher voltage. With buckling beams, displacements up to 150 μm have been obtained in the vertical direction. The generation of vertical force of 10 μN was confirmed with a 100 μm displacement producing 1 nJ work in the vertical direction. Finally, SDA overcomes the usual sticking of surface machined polysilicon by producing enough vertical force to completely release wide polysilicon plate (500 μm×50 μm) without external manipulation. The above characteristic, both in terms of structure releasing and vertical/horizontal forces and displacements provides the SDA with the capability of self-assembling complex 3-D polysilicon part, opening new integration capabilities and new application field of MEMS  相似文献   

10.

In this paper, design and simulation of a single-axial, capacitive, fully differential MEMS accelerometer based on surface micromachining with two proof masses is presented. So far, most surface micromachined capacitive accelerometers offered, employed differential interface circuits to measure capacitor variations. However, in the presented structure, the possibility of fully differential design is realized by dividing the proof mass to two electrically isolated parts that are located on a silicon nitride layer. By utilizing two proof masses and altering outputs and stimulation voltage, parasitic capacitor is reduced and the sensitivity is increased. Moreover, some sensor capacitors are embedded inside the proof mass, so that sensitivity could be increased in the limited area and electrode length could be reduced. Furthermore, analytic equations are derived to calculate the sensitivity, as well to optimize the sensor structure. The designed sensor has been simulated and optimized using COMSOL Multiphysics, where the simulation results show the mechanical and capacitive sensitivity of 29.8 nm/g and 15.8 fF/g, respectively. The sensor size is 1 mm × 1 mm that leads to excellent performance, regarding to the defined figure of merit.

  相似文献   

11.
This paper presents a symmetrical double-sided serpentine beam-mass structure design with a convenient and precise process of manufacturing MEMS accelerometers. The symmetrical double-sided serpentine beam-mass structure is fabricated from a single double-device-layer SOI wafer, which has identical buried oxides and device layers on both sides of a thick handle layer. The fabrication process produced proof mass with though wafer thickness (860 μm) to enable formation of a larger proof mass. Two layers of single crystal silicon serpentine beams with highly controllable dimension suspend the proof mass from both sides. A sandwich differential capacitive accelerometer based on symmetrical double-sided serpentine beams-mass structure is fabricated by three layer silicon/silicon wafer direct bonding. The resonance frequency of the accelerometer is measured in open loop system by a network analyzer. The quality factor and the resonant frequency are 14 and 724 Hz, respectively. The differential capacitance sensitivity of the fabricated accelerometer is 15 pF/g. The sensitivity of the device with close loop interface circuit is 2 V/g, and the nonlinearity is 0.6 % over the range of 0–1 g. The measured input referred noise floor of accelerometer with interface circuit is 2 μg/√Hz (0–250 Hz).  相似文献   

12.
This paper presents the design and fabrication of three MEMS based capacitive accelerometers. The first design illustrates the achievement of an accelerometer with 0% cross-axis sensitivity and has been fabricated using PolyMUMPs, a multi-user surface-micromachining process. A unidirectional parallel plate configuration is utilized in this design to illustrate the achievement of 0% cross-axis sensitivity and an acceptable performance range. In addition, a method is introduced to improve the sensitivity of a capacitive sensor employing a transverse configuration based on the relationship of initial gaps setup in comb-finger arrangements. A design based on this technique and the PolyMUMPs fabrication process is illustrated which demonstrates a sensitivity value of 4.07 fF/μm, with a nonlinearity of 2.05% for a ±3 μm sensor operating range. The last design based on this method and the SOIMUMPs fabrication process exhibits a sensitivity of 3.45 pF/μm for ±1 μm operating range of the sensor.  相似文献   

13.
The mechanical behavior of a novel resonant microstructure for magnetic applications through analytical and finite element (FE) models is presented. The squeeze-film damping is included with the development of a theoretical model which considers the parallel and transversal beams of the resonant structure. The response of the microstructure is obtained considering various magnetic fields orientations, and AC excitation currents with different magnitudes and frequencies. The microstructure has thin beam elements of polysilicon, 1.5 μm thickness by 20 μm width. It is suspended by air-gap of 2.5 μm and operates in the first torsional mode taking advantage of the Lorentz force principle. The analytical and FE results indicate a linear behavior of the microstructure deflection with a low consumption of AC current (574 μA) caused for 2 V AC voltage. Optimum response obtained using the mathematical analysis was 530 nm/Tesla with the magnetic field parallel to the microstructure (θ = 90° and α = 0°). These results show good agreement with the FE models.  相似文献   

14.
This paper presents a new micromachined z-axis accelerometer as well as a new method to sense the out-of-plane displacement capacitively via comb finger arrays. The new design built the z-accelerometer using eight folded beam suspension to minimize the off axis sensitivities in both the x- and y- directions. The proposed method implements the sensing electrode as a comb finger arrays surrounding the sensor. This method enables the realization of the sensor by bulk micromachining process, increases the sense capacitance and reduces the off-axis sensitivity. This process allows building the micromachined accelerometer with large inertial mass. This work introduces the design and simulation for this accelerometer. The introduced method results in a high sense capacitance as well as high sensitivity. The simulated sense capacitance is 19.6627 pF. The sensor sensitivity is 2.037 μm/g with a very small total noise equivalent acceleration of 3.096 μg/ $ \sqrt {Hz} $ .  相似文献   

15.
Vertical nano and micro pillars perpendicularly rising from a substrate offer two lateral translatory–rotatory degrees of freedom. Electroforming allows their production as small footprint integrated suspension elements of micro to nano scale. This paper demonstrates the design of a novel inertial sensor concept with acceleration sensor and gyroscope function using only one inertial mass. Experimental results using UV Direct LIGA with AZ 125 nXT show the feasibility of a technology demonstrator with a copper micro pillar of 400 μm length and 40 μm diameter. Further work using x-ray Direct LIGA is scheduled for the production of the pillar with a length of 100 μm and a diameter of 3–6 μm. Fabrication concepts and pilot tests show promising possibilities for miniaturization towards nano scale pillars for minimal footprint suspension in MEMS.  相似文献   

16.
The purpose of the paper is to design and fabricate a ZnO-based MEMS acoustic sensor for higher sound pressure level (SPL) measurement in the range of 120–200 dB and low frequency infrasonic wave detection. The thickness of silicon diaphragm was optimized for higher SPL using MEMS-CAD-Tool COVENTORWARE. The microtunnel which relates the cavity to the atmosphere was designed and simulated analytically for low cut-off frequency of the sensor in infrasonic band. The resonance frequency of the sensor was obtained using modal analysis. The sensitivity of the sensor was also estimated using COVENTORWARE. The optimized Si-diaphragm thickness for the intended SPL range was determined and found to be 50 μm. The lower cut-off frequency of the sensor for a 10 μm-deep microtunnel was found to be 0.094 Hz. The resonance frequency of the sensor was obtained using modal analysis and found to be 78.9 kHz. Based on simulation results, the MEMS acoustic sensor with 10 μm-deep microtunnel was fabricated. The optimum sensitivity of sensor was calculated using simulated results and found to be 116.4 μVolt/Pa. The lower cut-off frequency of the sensor can be utilized to detect low frequency sounds. The high SPL sensing capability of the device up to 200 dB facilitates detection of high sound pressure level in launch vehicles, rocket motors and weapons’ discharge applications.  相似文献   

17.
提出了一种基于永磁薄膜的新型MEMS磁传感器,磁传感器由MEMS扭摆、CoNiMnP永磁薄膜和差分检测电容等部分组成。分析了磁传感器的磁敏感原理和电容检测原理,提出了器件的结构参数并对器件进行了模态仿真。利用MEMS加工技术成功制作了MEMS磁传感器样品,并进行了测试。测试结果表明:得到的MEMS磁传感器的电容灵敏度可达到27.7 fF/mT,且具有良好的线性度。根据现有的微小电容检测技术,传感器的磁场分辨率可达到36 nT。  相似文献   

18.
设计了一种静电激励/电容检测的硅微机械谐振压力传感器,采用改进的侧向动平衡双端固支音叉谐振器,利用基于绝缘体上硅的加工工艺制作。为了抑制压力敏感膜片受压变形时谐振器的高度变化,在谐振器固定端设计了全新的桁架结构。针对传感器检测信号微弱和同频干扰严重的特点,在芯体和接口电路设计中采取添加屏蔽电极、降低交流驱动电压幅值、差动电容检测和高频载波调制解调方案等多项措施。同时基于该接口电路设计了开环测试系统,并在常压封装条件下对传感器进行了初步性能测试。实验结果表明:其基础谐振频率为33.886 kHz,振动品质因数为1222;测量范围为表压0~280 kPa,非线性为0.018%FS,迟滞为0.176%FS,重复性为0.213%FS;在-20~60℃的温度范围内,谐振器的平均温度漂移为-0.037%/℃。  相似文献   

19.
一种新型变电容面积MEMS惯性传感器与传统的梳齿电容传感器相比,具有对梳齿电容不平行敏感度低,可加测试电压高等优点.通过对该传感器在低真空封装条件下的惯性阶跃响应特性分析,着重研究了不同梳齿电容倾斜角度对该传感器的阶跃惯性信号响应的影响,以及不同倾斜角度梳齿的位移响应和测试电压、空气真空度的关系,并把该结果和梳齿结构的情况进行比较.结果表明,工艺因素对变电容面积MEMS惯性传感器在低真空封装下的阶跃惯性响应影响很小;另外,该结构上可加的测试电压可以是梳齿电容结构上可加测试电压的近10倍,这有利于减小接口电路的噪声.以上分析论证了该新型传感器有利于降低器件的工艺要求和提高传感器的分辨率.  相似文献   

20.
A large-deformation and low-voltage micro actuator is proposed in this paper to overcome the problems of high voltage and undersized deformation of electrostatic micro actuator. The principle of the proposed actuator is based on vertical-horizontal bending. Dynamic equations of the micro actuator under axial and horizontal loading are built based on Lagrange–Maxwell electromechanical dynamics equations. In addition, the influences of thermal stress, axial electrostatic force and squeezing force are analyzed. Furthermore, the horizontal distributed load and axial load are equivalent to horizontal centralized load based on the Runge–Kutta algorithm and finite difference method. The relationships of deformation with driving voltage, regulation voltage, and axial compression quantity and temperature difference are achieved by simulation. Simulation results show that the deformation of the proposed actuator is as high as 10.861 μm when the driving voltage is 16 V. The deformation of proposed micro actuator is larger than that of the existing one. Finally, the simulation results are verified by experiment and agree well with experiment results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号