首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We experimentally coated the TiO2 thin films on the glass beads by a rotating cylindrical plasma chemical vapor deposition (PCVD) process. The precursors for the thin films were generated by the plasma reactions, and they deposited on the glass beads to become the grains on the films. The TiO2 thin films grow more quickly on the glass beads by increasing the reactor pressure, or the rotation speed of the reactor. As the applied power increases, the thickness of the thin films on the glass beads decreases. As the thickness of the TiO2 thin films increases, the uniformity of the TiO2 thin films decreases due to the deposition of larger grains or due to the increase of crack size. The rotating cylindrical PCVD process can be a good method to prepare the particles coated with metal or organic-doped thin films for highly functionalized materials.  相似文献   

2.
In this study, we propose a plasma-chemical hybrid NOx removal process using nonthermal plasma for the treatment of flue gases emitted from glass melting furnaces; the process is demonstrated through a laboratory-scale model experiment conducted using a semi-dry desulfurization apparatus. The performance of the system for simultaneous removal of SO2 and NOx is investigated. As a result, NO is effectively oxidized to NO2 by injecting ozone into the spray region and the removal efficiencies of 90% and 50% were obtained for NO and NOx, respectively. In addition, the SO2 removal efficiency of 84% was achieved.  相似文献   

3.
This study investigates the photocatalytic performance of V-TiO2 for removal of highly concentrated ammonia (1,000 ppm) in the dielectric barrier discharge (DBD), plasma-photocatalytic, hybrid system. The V (1.0, 5.0, 10.0 mol-%)-TiO2 photocatalysts were prepared by using the conventional sol-gel method. Their surface areas were decreased with increasing vanadium component. The UV-visible absorption band slightly shifted to more visible wavelengths in V-TiO2 compared to that in pure TiO2. The NH3-TPD result confirmed that the ability of NH3 adsorption on the surface of V-TiO2 increased with increasing vanadium content, and was maximized for 5.0-mol% V-TiO2. The NH3 decomposition was enhanced with the photocatalyst compared to the decomposition rate without catalysts, while the decomposition was further increased with the applied plasma voltage. The NH3 decomposition reached 90% after 400 min at an applied plasma voltage of 10.0 kV, and various intermediates, such as-NH2,-NH, and NO, were also identified by using the Fourier transform infrared (FT-IR) spectra. In addition, the NH3 decomposition reached 100% in the plasma-5.0 mol% V-TiO2, photocatalytic, hybrid system after 25 min, compared to 98% in the pure V-TiO2 photocatalytic system after 150 min. In addition, the various undesirable byproducts were depressed when V-TiO2 photocatalyst was used compared to that in the non-catalytic system.  相似文献   

4.
介质阻挡放电中气体成分对NOx脱除的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
汪涛  孙保民  肖海平  杜旭  曾菊瑛  段二朋  饶甦 《化工学报》2012,63(11):3652-3659
利用介质阻挡放电(DBD)产生低温等离子体进行烟气的脱硝实验,研究了在乙烯存在的条件下,温度和其他烟气成分对NOx脱除率的影响。结果表明:随着温度的升高,NO脱除速率增快;模拟烟气中加入CO2,在能量密度较低时,CO2作为电负性分子会降低自由基的生成,导致NO的脱除率降低,随着能量密度的升高,CO2对NO脱除的影响减小;模拟烟气中加入水后可以产生更多的OH、HO2等自由基,促进NO的氧化;SO2的加入会与自由基O反应,使初始反应中O与C2H4的反应速率减弱,从而影响了NO的氧化速率,但O3、HO2等强氧化自由基会优先与NO反应,因此SO2的加入不会影响NO最终的脱除率。  相似文献   

5.
《Ceramics International》2021,47(22):31302-31310
Control of Nitrogen dioxide (NO2) byproducts is of great importance for the photocatalytic NO removal and environmental remedy. However, individual semiconductor photocatalysts generally show limited capabilities for selective NO removal due to severe charge recombination and inadequate redox potentials. Herein, the cotton-like g-C3N4 was modified with Ti3C2@TiO2 to construct a heterojunction photocatalyst Ti3C2@TiO2/g-C3N4, which showed outperformed photocatalytic NO removal and MB degradation abilities compared to the individual photocatalysts under visible light irradiation. The UV–vis absorption spectra and photoluminescence (PL) spectra confirmed that Ti3C2@TiO2/g-C3N4 photocatalyst was endowed with superior light utilization and separation/transfer ability of charge carriers due to the presence of n-n heterojunction and Schottky barrier. Furthermore, the g-C3N4, Ti3C2, and TiO2 were closely contacted showing a high specific surface area, which promoted the charge transfer and the exposure of more active sites, further inducing the formation of more active species. Therefore, the designed photocatalyst delivered a high removal rate of NO and a suppressed discharge of NO2. Notably, the photocatalyst Ti3C2@TiO2/g-C3N4 also presented superior NO removal ability during the cycling experiment, indicating their outstanding stability and recyclability. Besides, the effects of active species were monitored using a trapping experiment to propose probable photocatalytic mechanism. This study could shed a new light to the design of photocatalyst for air purification in the future.  相似文献   

6.
Abstract

Today, the ultrasound utilizing for material synthesis has been extensively investigated. The unusual acoustic cavitation phenomenon caused by ultrasonic waves has created a new world for the production of high efficiency photocatalysts with new structures. In this study, TiO2, TiO2-Ag, and TiO2-ZnO thin film photocatalysts were prepared using titanium isopropoxide Ti[OCH(CH3)2]4, zinc acetate dehydrates (CH3COO)2Zn·2H2O, and silver nitrate AgNO3 by a sol–gel method under the ultrasonic irradiation. The prepared photocatalysts were characterized by UV–vis diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive spectroscopy. The SEM images showed that the Ag and ZnO particles were evenly dispersed in the photocatalysts due to the ultrasonic irradiation, and Ag particles were approximately 90?nm, which is relatively small compared to the photocatalysts which is not treated with ultrasonic irradiation. The catalytic activity of the photocatalysts was determined using Acid Red 27 dye. The most excellent catalytic degradation was obtained with TiO2-ZnO thin film photocatalyst. In comparison to the conventional photocatalyst, the efficiency of photocatalytic activity of the photocatalyst produced under ultrasonication has been increased due to the reduced size of Ag and ZnO and its uniform dispersion.  相似文献   

7.
In this study, highly effective B-doped, Ni-doped and B–Ni-codoped TiO2 microspheres photocatalysts were directly synthesized via an aerosol-assisted flow synthesis method. The resulting samples were characterized by XRD, SEM, TEM, UV–vis diffuse reflectance spectroscopy, nitrogen adsorption and XPS. The characterizations revealed hollow microspherical structure of the B-doped and B–Ni-codoped TiO2 photocatalysts, while the Ni-doped and undoped TiO2 products consisted of solid microspheres. It was found that the boron dopant was partially embedded into the interstitial TiO2 structure, existing in the form of Ti–O–B structure. The band gap was enlarged after the boron doping. However, both Ni-doped and B–Ni-codoped TiO2 samples showed obvious red shift in their absorption edges because of the Ni doping. The photocatalytic activities of these samples were evaluated on the photocatalytic removal of NO under simulated solar light irradiation. All the aerosol-assisted flow synthesized samples had much higher photocatalytic activities than P25 and the doped TiO2 microspheres exhibited enhanced photocatalytic activity than the undoped counterparts. More interestingly, the B–Ni-codoped TiO2 photocatalyst possessed superior photocatalytic activity to the as-prepared single doped TiO2 products. The enhanced photocatalytic activity was explained and the formation mechanisms of hollow and solid microspheres were also proposed on the basis of characterizations. We think this general method may be easily scaled up for industrial production of highly active microspherical photocatalysts for efficient NO removal under simulated solar light irradiation.  相似文献   

8.
Transparent TiO2 thin film photocatalysts were prepared on transparent porous Vycor glass (PVG) by an ionized cluster beam (ICB) method. The UV‐VIS absorption spectra of these films show specific interference fringes, indicating that uniform and transparent TiO2 thin films are formed. The results of XRD measurements indicate that these TiO2 thin films consist of both anatase and rutile structures. UV light (λ > 270 nm) irradiation of these TiO2 thin films in the presence of NO led to the photocatalytic decomposition of NO into N2, O2 and N2O. The reactivity of these TiO2 thin films for the photocatalytic decomposition of NO is strongly dependent on the film thickness, i.e., the thinner the TiO2 thin films, the higher the reactivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Converting elemental mercury into divalent compound is one of the most important steps for mercury abatement from coal fired flue gas. The oxidation of elemental mercury was investigated in this paper using dielectric barrier discharge (DBD) non-thermal plasma (NTP) technology at room temperature. Effects of different flue gas components like oxygen, moisture, HCl, NO and SO2 were investigated. Results indicate that active radicals including O, O3 and OH all contribute to the oxidation of elemental mercury. Under the conditions of 5% O2 in the simulated flue gas, about 90.2% of Hg0 was observed to be oxidized at 3.68 kV discharge voltage. The increase of discharge voltage, O2 level and H2O content can all improve the oxidation rate, individually. With O2 and H2O both existed, there is an optimal moisture level for the mercury oxidation during the NTP treatment. In this test, the observed optimal moisture level was around 0.74% by volume. Hydrogen chloride can promote the oxidation of mercury due to chlorine atoms produced in the plasma process. Both NO and SO2 have inhibitory effects on mercury oxidation, which can be attributed to their competitive consumption of O3 and O.  相似文献   

10.
Recently, many water treatment technologies, such as biological treatment, coagulation/precipitation techniques, Fenton oxidation treatments, and advanced oxidation techniques, have been assessed to address the worsening clean water shortage. This review summarizes these technologies and provides the background and principle of photocatalysis for advanced oxidation technology. In particular, this paper focuses on semiconductor TiO2 photocatalysts as well as the latest modifications of TiO2 photocatalyst, such as the introduction of metals or heteroatoms onto TiO2, physical modification of TiO2 for a variety of morphologies, and hybrid TiO2/nanocarbon composites, to improve the photocataytic activities for an advanced oxidation process. This review provides useful information to scientists and engineers in this field.  相似文献   

11.
A catalytic method using titanium dioxide (TiO2) under a dielectric barrier discharge (DBD) plasma was studied to improve the decomposition of phenol adsorbed on granular activated carbon (GAC) and the simultaneous regeneration of the saturated GAC. The TiO2–GAC hybrid was fabricated by an impregnation-desiccation method and characterised by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms and Boehm titration to investigate its adsorption and catalytic characteristics before and after the adsorption and DBD processes. The adsorption experiments showed that the GAC and TiO2–GAC both followed pseudo-second-order kinetic models with adsorption isotherms that were well represented by the Langmuir model. TiO2–GAC exhibited remarkable catalytic activity, increasing the phenol degradation by 19% and TOC removal by 8.7% relative to GAC in DBD treatment. TiO2–GAC also exhibited better regeneration efficiency than GAC, and the reusability of the hybrid material was examined over four consecutive adsorption-regeneration cycles. The above results may be due to the enhanced generation of active species, such as hydroxyl radicals and hydrogen peroxide, on TiO2–GAC relative to GAC during the discharge process, and the main intermediate products were analysed to explore the mechanisms involved in DBD plasma.  相似文献   

12.
Nano-sized titanium dioxide (TiO2) has received a great attention in the field of research and development as a promising photocatalyst to promote the degradation of organic contaminants in water. One of the key technical challenges involved in separation and recovery of the photocatalyst particles from the water treatment system makes this technology unviable as an industrial process. A novel titania impregnated kaolinite (TiO2/K) photocatalyst was synthesized by a modified two step sol–gel method: hydrolysis of titanium(IV) butoxide and heterocoagulation with pre-treated kaolinite (K) clay. The TiO2/K photocatalysts were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and BET specific surface area measurements (BET). The photocatalytic activity was evaluated by the degradation of Congo red in aqueous solution. The TiO2/K photocatalyst had a rigid porous layer structure and promising nano-size properties, and demonstrated an enhanced adsorption and photocatalytic ability for the removal of Congo red. The TiO2/K photocatalyst can be easily separated and recovered from the water treatment system. The TiO2/K photocatalyst is expected to deliver a true engineering solution for an industrial water/wastewater treatment process.  相似文献   

13.
Recently, there have been considerable interests to immobilize photocatalyst in alginate beads for removing pollutants from water sources. However, the feasibility of using alginate beads in industry largely depends on its long‐term stability during operation. This study investigated the physicochemical stability of alginate/titanium dioxide beads (Alg/TiO2) when exposed to UV irradiation in aqueous environment. The degradation of Alg/TiO2 beads was evident because the diameter and mass of the beads was reduced by 12% and 40%, respectively, after 120 h of irradiation. A substantial amount of TiO2 was leached into the external medium. Consequently, the removal efficiency of model cationic dye was found to reduce after every process cycle. Morphological analysis showed the formation of cavities on the surface of the Alg/TiO2 beads. Interestingly, the blank alginate beads degraded more rapidly than the Alg/TiO2 beads, confirming the UV‐shielding effect of TiO2. Nevertheless, this study reveals the need to improve the UV stability of alginate‐based beads before they can be considered for practical application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45002.  相似文献   

14.
《Catalysis communications》2007,8(11):1851-1856
As a new photocatalyst, TiO2-entrapped EFAL (extra-framework-aluminium)-removed Y-zeolites (TiO2–EFAL-removed Y-zeolites) were synthesized, and they were applied to photocatalytic decomposition of 2-methylisoborneol (2-MIB) dissolved in water. UV-absorption spectroscopic and GC-mass spectrometric studies released that the photocatalytic decomposition of 2-MIB is achieved through formation of a cyclopentene-type intermediate. It was found by kinetic studies that TiO2–EFAL-removed Y-zeolites are highly adsorptive and their photocatalytic quantum efficiency was about 0.04, much larger than that of Degussa P-25 TiO2. These results suggest that TiO2–EFAL-removed Y-zeolites would be promising photocatalysts for efficient and rapid removal of taint compounds in natural water resources.  相似文献   

15.
《Ceramics International》2023,49(4):5893-5904
In this work, nanoflower-like CdS/SnS2/TiO2 NTs ternary heterojunction photocatalysts were synthesized by a hydrothermal method, the relationship between the morphology, microscopic morphology, crystallinity, elemental presence state and hydrogen production performance of the ternary photocatalysts were investigated by SEM, TEM, XRD and XPS, respectively. The photocatalytic performance, electrochemical property and hydrogen production capacity of CdS/SnS2/TiO2 NTs were compared with pure TiO2 NTs, CdS/TiO2 NTs and SnS2/TiO2 NTs. After 2 h of photocatalytic reaction, the removal efficiency of MB wastewater reached 100%, and the photocatalytic efficiencies toward RhB and Cr(VI) removal reached 86.08% and 80.93% after 3 h, respectively. The electron spin resonance (ESR) technique certified the active radical groups that played a role in the catalytic process and further investigated the possible photocatalytic mechanism. Hydrogen production per unit time achieved 97.14 μmol h?1 cm?2, this work provides the new technique to achieve solar energy conversion for hydrogen generation.  相似文献   

16.
《Ceramics International》2019,45(13):15942-15953
The development of highly efficient and multifunctional composite photocatalysts for both energy conversion and environmental governance has obtained great concerns. Here, a novel CdIn2S4/TiO2 (CIS/THS) hollow composite photocatalyst was firstly designed and synthesized via a facile in-situ growth process, where the CdIn2S4 nano-octahedra densely attached on the surface of TiO2 hollow spheres to form the unique hybrid heterostructure. The as-synthesized CIS/THS heterojunctions exhibit much superior photocatalytic activities for hydrogen evolution and Methyl Orange (MO) decomposition in comparison to pure CdIn2S4 and TiO2 hollow spheres. The experimental results display that the CIS/THS-3 sample with the 30 wt% of TiO2 presents the optimal photocatalytic H2 production efficiency and its generation rate is 3.38 and 2.56 times as high as those of pure TiO2 and CdIn2S4. Besides, the as-synthesized CIS/THS-3 hybrid also possesses the best MO photodegradation performance and its rate constant is 11.43 and 8.34 times higher than those of pure TiO2 and CdIn2S4. The enhanced photocatalytic activities can be assigned to the synergistic effect, optimized light-harvesting capacity and the formation of hybrid heterostructure for boosting interfacial charge transfer and separation. Furthermore, based on the trapping experiments and ESR analysis, the possible type-Ⅱ interface charge transport mechanism was also proposed. Our study may provide the direct guidance for constructing other hollow TiO2-based composite photocatalysts with superior photocatalytic water splitting and degradation performances.  相似文献   

17.
Highly ordered titanium nanotubes (TiO2 NTs) photocatalyst was prepared by the anodic oxidation method, and AgS, CdS, and AgS/CdS nanoparticles were doped on the surface of TiO2 NTs by the successive ion adsorption and reaction (SILAR) method. The photocatalysts were characterized by SEM, EDS, XRD, and potentiostat system. The SEM and EDS analyses respectively show that the average outer diameter of prepared photocatalysts is in the range of 50–120?nm, and the presence of Ti, O, Ag, and Cd is successfully proved. The photocatalytic properties of TiO2 NTs and doped TiO2 NTs were studied by measuring the degradation of Methylene Blue (MB) solution. The experimental results show that AgS/CdS/TiO2 photocatalyst exhibited most efficient photocatalytic activity with 340?µA/cm2 photocurrent value. AgS/CdS/TiO2 NTs photocatalyst shows up to 22.20% higher than TiO2 NTs, 16.42% higher than CdS/TiO2 NTs, and 4.3% higher than AgS/TiO2 NTs.  相似文献   

18.
In order to more easily separate TiO2 photocatalyst from treated wastewater, TiO2 photocatalyst is immobilized on coal fly ash by precipitation method. The titanium hydroxide precipitated on coal fly ash by neutralization of titanium chloride is transformed into titanium dioxide by heat treatment in the temperature range of 300–700 ‡C. The crystalline structure of the titanium dioxide shows anatase type in all ranges of heat treatment temperature. The crystal size of anatase increases with increasing heat treatment temperature, with the drawback being the lower removal ability of NO gas. When the coal fly ash coated with 10 wt% of TiO2 was calcined at 300 and 400 ‡C for 2 hrs, the average crystal size of anatase appeared about 9 nm, and the removal rates of NO gas were 63 and 67.5%, respectively. The major iron oxide, existing in coal fly ash as impurity, is magnetite (Fe3O4). Phase transformation of magnetite into hematite (Fe2O3) by heat treatment improves the removal rate of NO gas for TiO2-coated coal fly ash.  相似文献   

19.
TiO2 photocatalyst loaded on Si3N4 (TiO2/Si3N4) was prepared by a conventional impregnation method and its photocatalytic performance for the degradation of organics (2-propanol) diluted in water was compared with that of TiO2 photocatalysts (TiO2/SiO2, TiO2/Al2O3, and TiO2/SiC) loaded on various types of supports (SiO2, Al2O3, and SiC). The formation of the well-crystallized anatase phase of TiO2 was observed on the calcined TiO2/Si3N4 photocatalyst, while a small anatase phase of TiO2 was observed on the TiO2/SiC photocatalyst and amorphous TiO2 species was the main component on the TiO2/SiO2 and TiO2/Al2O3 photocatalysts. The measurements of the water adsorption ability of photocatalysts indicated that the TiO2/Si3N4 photocatalyst exhibited more hydrophobic surface properties in comparison to other support photocatalysts. Under UV-light irradiation, the TiO2/Si3N4 photocatalyst decomposed 2-propanol diluted in water into acetone, CO2, and H2O, and finally, acetone was also decomposed into CO2 and H2O. The TiO2/Si3N4 photocatalyst showed higher photocatalytic activity than TiO2 photocatalyst loaded on other supports. The well-crystallized TiO2 phase deposited on Si3N4 and the hydrophobic surface of Si3N4 support are important factors for the enhancement of photocatalytic activity for the degradation of organic compounds in liquid-phase reactions.  相似文献   

20.
The experiments were performed in a countercurrent packed column in a continuous mode to study the absorption of nitric oxide in sodium chlorite/urea solutions. Sodium chlorite mainly works as an agent to oxidize NO to NO2. A combined SO2/NO removal system was also tested. On the basis of high SO2 removal efficiency, the NO removal efficiencies under various experimental conditions were emphatically measured. Among the operating variables such as initial NaClO2 concentration, urea concentration, temperature and initial pH value, the pH value of the absorbing liquid was found to have a great impact on both NO removal efficiency and NO2 concentration. NO removal efficiency was increased with increasing NaClO2 concentration and temperature. Urea almost has no negative effect on NO removal efficiency, however it aids the abatement of NO2 greatly. The anions in the spent scrubbing liquor were analyzed by ion chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号