首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

2.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

3.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. In this study, the combustion, performance and emission characteristics of CRDI diesel engine assisted CNG dual fuel research engine operated at constant speed of 1500 rpm with variable engine load (16, 20 and 24 NM) to analyses the influence of fuel injection timings (7.5, 12.5 and 17.5 SOI) and fuel injection pressure (500, 750 and 1000 bar) under reactivity-controlled compression ignition (RCCI) mode. In the case of a fuel injection pressure of 1000 bar, the maximum brake specific fuel consumption of 0.42 kg/kWh is registered with a brake mean effective pressure of 3.2 bar. Response surface methodology has been used in this analysis for predicting the optimal input parameters (engine load, fuel injection timing, and fuel injection pressure), which results in an optimal combination of performance (BP, BTHE, and BSFC) and emission (HC, NOx, and CO) parameters. A variety of optimal solutions based on the desirability method is obtained from the model, and optimal input parameters is suggested as load 20(Nm), injection pressure 750(Bar), and injection timing (BTDC) 12.5. Additionally, to obtain a ‘regression model’ a statistically significant test (ANOVA) is developed. Results have shown that the suggested ‘Regression Model’ is best fitted to 0.095 standard deviations, 0.972 corrected R2, and 18.482 acceptable accuracy.  相似文献   

4.
Due to the increasing demand for fossil fuels and environmental threat, a number of renewable sources of energy have been studied worldwide. In the present investigation a high linolenic linseed oil methyl ester has been investigated in a constant speed, DI diesel engine with varied fuel injection pressures (200, 220 and 240 bar). The main objective of this study is to investigate the effect of injection pressures on performance, emissions and combustion characteristics of the engine. The test results show that the optimum fuel injection pressure is 240 bar with linseed methyl ester. At this optimized pressure the thermal efficiency is similar to diesel and a reduction in carbon monoxide, unburned hydrocarbon and smoke emissions with an increase in the oxides of nitrogen was noticed compared to diesel. The combustion analysis shows that, the ignition delay is lower at higher injection pressures compared to diesel and the peak pressure is also higher at full load. The combustion duration was almost same at all the injection pressures. It is concluded that linseed methyl ester at 240 bar injection pressure is more efficient than 200 and 220 bar, except for nitrogen oxides emission.  相似文献   

5.
In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NOx-soot trade-off characteristics were changed and improvements were found simultaneously. NOx and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.  相似文献   

6.
Alcohols have been used as a fuel for engines since 19th century. Among the various alcohols, ethanol is known as the most suited renewable, bio-based and ecofriendly fuel for spark-ignition (SI) engines. The most attractive properties of ethanol as an SI engine fuel are that it can be produced from renewable energy sources such as sugar, cane, cassava, many types of waste biomass materials, corn and barley. In addition, ethanol has higher evaporation heat, octane number and flammability temperature therefore it has positive influence on engine performance and reduces exhaust emissions. In this study, the effects of unleaded gasoline (E0) and unleaded gasoline–ethanol blends (E50 and E85) on engine performance and pollutant emissions were investigated experimentally in a single cylinder four-stroke spark-ignition engine at two compression ratios (10:1 and 11:1). The engine speed was changed from 1500 to 5000 rpm at wide open throttle (WOT). The results of the engine test showed that ethanol addition to unleaded gasoline increase the engine torque, power and fuel consumption and reduce carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbon (HC) emissions. It was also found that ethanol–gasoline blends allow increasing compression ratio (CR) without knock occurrence.  相似文献   

7.
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ? = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.  相似文献   

8.
In this study, chicken fat biodiesel with synthetic Mg additive was studied in a single-cylinder, direct injection (DI) diesel engine and its effects on engine performance and exhaust emissions were studied. A two-step catalytic process was chosen for the synthesis of the biodiesel. Methanol, sulphuric acid and sodium hydroxide catalyst were used in the reaction. To determine their effects on viscosity and flash point of the biodiesel, reaction temperature, methanol ratio, type and amount of catalyst were varied as independent parameters. Organic based synthetic magnesium additive was doped into the biodiesel blend by 12 μmol Mg. Engine tests were run with diesel fuel (EN 590) and a blend of 10% chicken fat biodiesel and diesel fuel (B10) at full load operating conditions and different engine speeds from 1800 to 3000 rpm. The results showed that, the engine torque was not changed significantly with the addition of 10% chicken fat biodiesel, while the specific fuel consumption increased by 5.2% due to the lower heating value of biodiesel. In-cylinder peak pressure slightly rose and the start of combustion was earlier. CO and smoke emissions decreased by 13% and 9% respectively, but NOx emission increased by 5%.  相似文献   

9.
Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100–105) and calorific value (5–6 MJ/Nm3). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures.Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased smoke, NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to single fuel operation.  相似文献   

10.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

11.
Liquid-fueled pulse detonation engines must complete the process of feeding, mixing, and purging in milliseconds. Such an engine is extremely sensitive to the Sauter mean diameter (SMD – must be less than 10 μm) and particle size distribution of the fuel, requirements which are difficult if impossible for most fuel injectors to achieve. This study selected an injector from a direct injection engine and used the aviation fuel JP-8. Utilizing a wide range of operation pressure and duration time, the injection timing and equivalence ratio could be accurately controlled with good response time. The results of the experiment indicate that an SMD of less than 10 μm can be achieved with a fuel pressure greater than 8 MPa. This condition, however, resulted in an overly long injection penetration. This study further incorporated the concept of flash boiling to derive a smaller SMD. However, this causes carbon deposition to occur due to cracking or thermal reaction. To circumvent this phenomenon, this study established a deoxygenation device to mitigate oxidization, further investigating the influence of heating temperature on the generation of deposition. The results of spray distribution indicated that when the fuel is heated to 100 °C, only 6 MPa is necessary for achieving fuel droplet characteristics favorable for detonation. Regarding deoxygenation, the results were most significant in fuel heated to 500 °C.  相似文献   

12.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

13.
Due to increasingly stringent fuel consumption and emission regulation, improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine. Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines, although the burning rate is decreased by higher diluted intake air. In this study, dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug. The effects of engine control parameters such as the excess air coefficient (Lambda), direct injection (DI) ratio, spark interval with DI, and DI timing on combustion, fuel consumption, gaseous emissions, and particulate emissions of a dual injection gasoline engine are studied. It is shown that the lean burn limit can be extended to Lambda= 1.8 with a low compression ratio of 10, while the fuel consumption can be obviously improved at Lambda= 1.4. There exists a spark window for dual injection stratified lean burn mode, in which the spark timing has a weak effect on combustion. With optimization of the control parameters, the brake specific fuel consumption (BSFC) decreases 9.05% more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure (BMEP) at a 2000 r/min engine speed. The NOx emissions before three-way catalyst (TWC) are 71.31% lower than that of the original engine while the particle number (PN) is 81.45% lower than the original engine. The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions. The BSFC reduction rate is higher than 5% and the PN reduction rate is more than 50% with the speed lower than 2400 r/min and the load lower than 5 bar.  相似文献   

14.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

15.
Diesterol is a new specific term which denotes a mixture of fossil diesel fuel (D), vegetable oil methyl ester called biodiesel (B) and plant derived ethanol (E). In the context of the present paper, this term refers specifically to the combination of diesel fuel, bioethanol produced from potato waste, dehydrated in a vapor phase using 3A Zeolite, and sunflower methyl ester produced through transesterification. The mixture of DBE, i.e. diesterol, was patented under the Iranian patent No. 39407, dated 12-3-2007. The main purpose of this research work was to reduce engine exhaust NOx, CO, HC and smoke emissions due to application of biofuel and the increase of fuel oxygen content. It was needed to prepare suitable low cost and renewable additives. The diesterol properties such as pour point, viscosity, flash point, copper strip corrosion, ash content, sulfur content and cetane number were determined experimentally. The optimum ratio of bioethanol and biodiesel was found to be 40/60 considering fuel oxygen content, fuel price and mixture properties. Bioethanol was added to enhance the oxygenated component in the fuel, while the sunflower methyl ester was added to maintain the fuel stability at low temperatures. The parameters considered for investigation are the engine power, torque, specific fuel consumption and exhaust emissions for various mixture proportions. The experimental results showed that bioethanol plays an important role in determining the flash point of the blends. By adding 3% bioethanol to diesel and sunflower methyl ester, the flash point was reduced by 16 °C. The viscosity of the blend was also reduced by increasing the amount of bioethanol. The sulfur content of bioethanol and sunflower methyl ester is very low compared to diesel fuel. The sulfur content of diesel is 500 ppm whereas that of bioethanol and sunflower methyl ester is 0 and 15 ppm, respectively. This lower sulfur content is another factor enhancing the use of fuel blends in diesel engines. The bioethanol and sunflower methyl ester combination has sulfur content less than 20 ppm. The maximum power and torque using diesel fuel were 17.75 kW and 64.2 Nm at 3600 and 2400 rpm, respectively. Adding oxygenated compounds to the new blend seems to slightly reduce the engine power and torque and increased the average sfc for various speeds. The experimental measurement and observation of smoke concentration, NOx, CO and HC concentration indicated that both of these pollutants reduced by increasing the biofuel composition of diesterol throughout the engine operating range.  相似文献   

16.
The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NOx, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of ?4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures (?0 °C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NOx, both its behaviour and the sequence are opposite to that of CO.  相似文献   

17.
The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.  相似文献   

18.
《Applied Thermal Engineering》2007,27(11-12):1904-1910
A 3-cylinder port fuel injection engine was adopted to study engine power, torque, fuel economy, emissions including regulated and non-regulated pollutants and cold start performance with the fuel of low fraction methanol in gasoline. Without any retrofit of the engine, experiments show that the engine power and torque will decrease with the increase fraction of methanol in the fuel blends under wide open throttle (WOT) conditions. However, if spark ignition timing is advanced, the engine power and torque can be improved under WOT operating conditions. Engine thermal efficiency is thus improved in almost all operating conditions. Engine combustion analyses show that the fast burning phase becomes shorter, however, the flame development phase is a little delay.When methanol/gasoline fuel blends being used, the engine emissions of carbon monoxide (CO) and hydrocarbon (HC) decrease, nitrogen oxides (NOx) changes little prior to three-way catalytic converter (TWC). After TWC, the conversion efficiencies of HC, CO and NOx are better. The non-regulated emissions, unburned methanol and formaldehyde, increase with the fraction of methanol, engine speed and load, and generally the maximum concentrations are less than 200 ppm. Experimental tests further prove that methanol and formaldehyde can be oxidized effectively by TWC. During the cold start and warming-up process at 5 °C, with methanol addition into gasoline, HC and CO emissions decrease obviously. HC emission reduces more than 50% in the first few seconds (cold start period) and nearly 30% in the following warming-up period, CO reduces nearly 25% when the engine is fueled with M30. Meanwhile, the temperature of exhaust increases, which is good to activate TWC.  相似文献   

19.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The study of effect of injection timing along with engine operating parameters in Jatropha biodiesel engine is important as they significantly affect its performance and emissions. The present paper focuses on the experimental investigation of the influence of injection timing, load torque and engine speed on the performance, combustion and emission characteristics of Jatropha biodiesel engine. For this purpose, the experiments were conducted using full factorial design consisting of (33) with 27 runs for each fuel, diesel and Jatropha biodiesel. The effect of variation of above three parameters on brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak cylinder pressure (Pmax), maximum heat release rate (HRRmax), CO, HC, NO emissions and smoke density were investigated. It has been observed that advance in injection timing from factory settings caused reduction in BSFC, CO, HC and smoke levels and increase in BTE, Pmax, HRRmax and NO emission with Jatropha biodiesel operation. However, retarded injection timing caused effects in the other way. At 15 N m load torque, 1800 rpm engine speed and 340 crank angle degree (CAD) injection timing, the percentage reduction in BSFC, CO, HC and smoke levels were 5.1%, 2.5%, 1.2% and 1.5% respectively. Similarly the percentage increase in BTE, Pmax, HRRmax and NO emission at this injection timing, load and speed were 5.3%, 1.8%, 26% and 20% respectively. The best injection timing for Jatropha biodiesel operation with minimum BSFC, CO, HC and smoke and with maximum BTE, Pmax, HRRmax is found to be 340 CAD. Nevertheless, minimum NO emission yielded an optimum injection timing of 350 CAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号