首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1250℃、应变速率为0.001~10s<'-1>条件下的热变形行为,采用金相显微镜对GH690合金热模拟试样的纵截面变形组织进行观察.结果表明:应变速率和变形温度对合金的流变应力与变形组织有显著影响.流变应力随变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感的材料;动态再结晶晶粒尺寸随应变速率的增加而减小,随变形温度的增大而增大.采用Zener-Hollomon参数的双曲正弦函数能较好地描述GH690合金高温变形时的流变行为,得到峰值应力表达式,GH690合金的热变形激活能Q为370.4 kJ·mol<'-1>.  相似文献   

2.
采用等温压缩试验,在变形温度为600~1050℃、应变速率为0.002~0.2s-1的条件下,研究了粉末冶金Ti-47.5Al-2.5V-1.0Cr合金的高温压缩性能与高温变形行为.结果表明:合金在高温压缩变形时,屈服强度随变形温度的升高、应变速率的降低而降低,塑性趋于升高.合金在高温塑性变形时,峰值流变应力、应变速率和变形温度之间较好地满足双曲正弦函数形式修正的Arrhenius关系,说明其变形受热激活控制.在800~1050℃/0.002~0.2s-1范围内,合金应变敏感系数m为0.152,高温变形激活能Q为376kJ.mol-1.  相似文献   

3.
TC11合金热变形行为及Z-D关系的研究   总被引:8,自引:0,他引:8  
考察了具有淬火马氏体组织的TC11合金在热压变形时的力学行为及显微组织特征。在各个为形温度和应变速率条件下,TC11合金的应力-应变曲线均表现出先硬化后软化的趋势,最后都获得一种相对稳定的变形状态;与此同时,原始非等轴片层组织通过动态再结晶转变为等轴均匀的组织;变形温度越低或变形速度较高,变形应力就越高,所获得的稳态晶粒尺寸就越小;通过对实验数据分析后发现,TC11合金在相对讷氏温区和相对高温区变  相似文献   

4.
铜—铬—锆—镁合金属于加工硬化和沉淀硬化复合强化的新型电极材料,它既具有高的强度和高的软化温度,又具有优良的导电性。本文应用光学及电子金相、电子探针扫描等微观分析手段以及机械性能试验、电阻测量等方法,研究了冷变形及时效对固溶淬火后的Cu-0.27%Cr-0.11%Zr-0.03%Mg合金线材组织和性能的影响,并对该合金的性能进行了评价。  相似文献   

5.
应用ProcessingMap研究D2钢高温变形的动态应变时效   总被引:2,自引:0,他引:2  
应用以动态材料模型为基础的ProcessingMap研究了D2钢在变形温度900~1160℃、变形速率0.01~10.00s-1区间的动态应变时效规律。结果表明,D2钢在变形温度为1120~1150℃、变形速率为0.01s-1条件下发生动态应变时效,并表现出强烈的硬化效应。同时,应变速率敏感系数小于零可以作为发生动态应变时效的一个标志。  相似文献   

6.
7050高强铝合金高温塑性变形的流变应力研究   总被引:7,自引:1,他引:6  
通过在Gleeble1500D热模拟试验机上进行等温热压缩试验,研究了7050高强铝合金在变形温度为300~450℃和应变速率为0.01~10s-1条件下的流变应力变化规律,计算推导出包含Arrhenius项的zener-Hollomon参数描述7050合金高温压缩流变行为的表达式.结果表明:应变速率和变形温度对7050合金的流变应力影响显著,流变应力随温度升高而降低,随应变速率的提高而增大;7050合金属于正应变速率敏感材料,合金的形变激活能为163.7425 KJ·mol-1.  相似文献   

7.
以GH4169高温合金为研究对象,通过低周疲劳试验研究了该合金常温下不同总应变幅时的循环变形行为和变形机制.结果表明,当总应变幅大于0.5%时,合金发生循环硬化(N<10周次)随后发生软化直至失效断裂;当总应变幅为0.5%时,合金直接发生瞬时软化直至最后的失效断裂.随总应变幅的增加,循环硬化速率先增加后降低,而循环软化...  相似文献   

8.
本文详述了α+β(两相)区淬火加低温时效、β(单相)区淬火加低温时效及冷变形加低温时效三种热处理工艺对Cu—Zn—Al合金组织和性能的影响,找出了该合金适合工业生产热处理工艺。并发现冷变形加低温时效热处理工艺不仅能极大地提高合金的抗拉强度,且能使该合金保持较高的伸长率。  相似文献   

9.
介稳β钛合金通常采用固溶高温时效强化,然而,近年来,一种新的冷变形高温时效强化方法引起了冶金材料工作者的极大兴趣.为此,我们研究了冷变形对介稳βTi一10Mo—8V—3Al—IFe合金高温时效强化和第二相形貌的影响,并对强化机制进行了研究和讨论.研究过程中发现,该合金板材经冷变形高温时效后的强化效果明显高于固溶高温时效强化.当合金冷变形量达到80%后,进行525℃/16h高温时效的强度值比800℃固溶和525℃/16h时效的强度值高出24%,达到1560MPa,而延伸率却没有降低,达到5%左右.为了弄清这一物理现象的本质,用TEM观察了冷变形、冷变形高温时效和固溶时效试样的微观组织.在冷变形试样中看到有许多交叉位错带,带中有堆积位错并形成尺寸为0.25μm的胞状结构,它与晶体结构、位错移动和位错相互作  相似文献   

10.
为了模拟Ti75合金焊接接头热影响区的组织,对其进行了β相区淬火处理。淬火后的Ti75合金为片层组织,采用不同工艺对其进行时效处理,研究了时效温度、时效时间对片层组织Ti75合金显微组织和力学性能的影响。结果表明:β相区淬火后Ti75合金的屈服强度、抗拉强度随时效温度升高而降低,冲击韧性随时效温度升高先降低后升高。时效温度较低时,马氏体α′相分解为稳定的α相和β相,以弥散强化作用为主;随着时效温度的升高以及时效时间的延长,片层组织发生合并长大现象,达到一定程度时,软化作用占据主要地位。断口分析表明,淬火态断口呈现准解理平面特征,随着时效过程中软化作用的增强,解理平面上出现浅韧窝,塑性增加。  相似文献   

11.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

12.
GH4169 合金"等温锻造+直接时效"工艺探讨   总被引:7,自引:0,他引:7  
利用Gleeble 15 0 0热力模拟实验机研究了温度、速率、变形量等对GH416 9合金等温变形力学参数及组织变化的影响。在较高的温度及较低的速率下 ,该合金的变形抗力显著降低 ,但变形后组织粗大 ;“等温成形 直接时效”后材料的室温拉伸、高温拉伸、高温持久等性能优于成形后再“固溶 时效”的性能。在 2 0 0t液压机上利用镍基高温合金模具进行了某航空发动机一级涡轮盘 1/4模拟件的等温成形 ,成形件外形良好 ,成形及直接时效后零件的材料组织细小均匀  相似文献   

13.
3104铝合金热变形流变应力模型   总被引:1,自引:0,他引:1  
陈文  林林  邓成林 《铝加工》2007,(5):22-24
采用等温压缩试验,研究了3104铝合金在应变速率为0.001-1s^-1、变形温度为573-773K条件下的流变应力行为。结果表明,3104合金流变应力对应变速率和变形温度十分敏感,合金高温塑性变形时存在稳态流变特征,并建立了合金热变形流变应力模型。  相似文献   

14.
TB2钛合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
在Gleeble-1500D热/力模拟试验机上,采用高温等温压缩试验,对TB2钛合金在高温压缩变形中流变应力行为进行了研究;应变速率为0.01-10 s^-1,变形温度为600-1200℃。结果表明:应变速率和变形温度的变化显著地影响合金流变应力的大小,流变应力随变形温度的升高而降低,随应变速率的提高而增大;可用Zener-Hollomon参数的双曲正弦函数形式来描述合金的流变应力行为。  相似文献   

15.
采用Gleeble高温压缩实验研究了变形条件对GH625合金高温变形动态再结晶的影响,结果表明:当变形程度较小时,原始晶粒内部出现大量孪晶,晶界呈现锯齿状凸出;随变形程度的增加,在晶界弓出部位开始形核,形成大量再结晶晶粒,随变形程度进一步增加,GH625合金动态再结晶体积分数增大,但是再结晶晶粒尺寸无明显变化;GH625合金动态再结晶是一个受变形温度和应变速率控制的过程,变形温度越高,动态再结晶越容易形核,应变速率越小,动态再结晶过程进行得越充分。在低应变速率条件下,GH625合金获得完全动态再结晶组织的温度随变形速率的升高而升高,而在高应变速率条件下必须考虑变形热效应对合金变形组织的影响。  相似文献   

16.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

17.
采用Gleeble-1500热模拟实验机,对挤压态AZ80镁合金在变形温度为250~450℃和应变速率为0.001~10s-1条件下进行热压缩塑性变形。将实验得到的流变应力经过温度修正后,分析该合金的应变速率敏感指数,构建其本构方程,并研究其发生动态再结晶的临界点。结果表明:低温低应变速率下变形时,AZ80镁合金的应变速率敏感指数较高;低温高应变速率下变形时,应变速率敏感指数较低;应变速率提高和温度降低都会导致发生动态再结晶的临界应变增大。  相似文献   

18.
采用Gleeble-1500D热模拟试验机研究机械合金化制备的ODS-310合金在变形温度为1 050~1 150℃、应变速率为0.001~1 s-1条件下的高温变形行为,测定其真应力-应变曲线,分析其流变应力与应变速率及变形温度三者之间的关系,并采用Zener-Hollomon参数法建立ODS-310合金的高温变形本构方程,基于动态材料模型,构造ODS-310合金的热加工图。结果表明:ODS-310合金的流变应力随变形温度降低或应变速率提高而增大;该合金热变形过程中的流变行为可用双曲线正弦模型来描述,在实验条件下的平均变形激活能为828.384 kJ/mol;真应变为0.4的热加工图表明,ODS-310合金在高温变形时存在2个加工失稳区,即变形温度为1 050~1 070℃、变形速率为0.01~1s-1的区域,和变形温度为1 130~1 150℃、变形速率为0.1~1 s-1的区域;ODS-310合金的最佳变形温度和应变速率分别为1 150℃和0.001 s-1。  相似文献   

19.
采用Gleeble-1500D热模拟试验机进行了单轴等温压缩实验,研究了IN718Plus镍基高温合金在变形温度1020~1140℃,应变速率0.001~1.000 s~(-1),变形量50%条件下的动态再结晶(DRX)行为,并建立了相关模型。研究结果表明:IN718Plus高温合金的动态再结晶行为对变形温度和应变速率敏感,动态再结晶晶粒尺寸及动态再结晶晶粒体积比随着变形温度的升高而增大,随着应变速率的加快而减小。在变形过程中,原始晶粒垂直于变形方向被拉长,细小的DRX晶核以晶界弓出的形式在原始晶粒边界处形核,并通过消耗原始变形晶粒的方式逐渐长大。当变形温度较低,应变速率较快时,动态再结晶程度不高,容易在合金变形组织产生典型的项链组织,且因此导致混晶现象严重。此外,以η相的溶解温度为界构建IN718Plus合金的动态再结晶临界应变模型、动力学模型以及晶粒尺寸模型, 3种模型精确度较高,能够较为准确的预测和表征该镍基高温合金的动态再结晶行为。  相似文献   

20.
本文利用金相观察法,研究了时效温度、冷变形和合金元素对Cu-20Ni-20Mn合金时效时晶界择优析出的影响,制定抑制该合金晶界择优析出的方法。结果表明;时效前的冷变形能有效地抑制晶界择优析出,高温时效(450℃)和添加合金元素钛也取得良好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号