首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 142 毫秒
1.
热轧相变过程变形抗力模型研究与开发   总被引:1,自引:0,他引:1  
李维刚  冯宁  王慎德  严保康 《钢铁》2017,52(6):61-66
 对精轧阶段存在相变的热轧钢种,因变形抗力随轧制温度的变化规律与常规的奥氏体轧制钢种显著不同,使得传统变形抗力模型的预报误差较大,严重影响这类钢种的轧制稳定性。为此,研发了一种热轧相变过程变形抗力模型,通过在原变形抗力模型基础上添加一个新的相变趋势项,该修正项为轧制温度的二次多项式函数,并根据钢种分类来精细优化适应不同钢种轧制的多项式待定参数。该模型目前已成功应用于涟钢CSP热连轧生产线变形抗力在线计算,实际生产应用表明,新模型上线后,变形抗力与轧制力的预报精度显著提高,轧制力模型预报误差12%以内的比例从83.3%提高到96.7%,满足了热连轧精轧相变带钢的稳定生产要求。  相似文献   

2.
郭韬 《冶金自动化》2014,(2):48-52,64
针对攀枝花钢钒有限公司1450热连轧生产规格变换频繁、同钢种带钢成分波动较大,导致换规格第1块带钢轧制力预报精度较低的情况,研究了精轧轧制力预报模型和其重要组成部分应力状态系数模型和变形抗力模型,结合现场生产数据,分析出化学成分修正系数和变形抗力自学习系数是影响轧制力预报精度的主要因素,从这两方面对模型进行优化,提高了轧制力预报精度。  相似文献   

3.
摘要:轧制力是影响中厚板厚度精度和板型的关键因素。兴澄特钢中厚板轧机二级模型采用传统Sims公式计算轧制力,精度较低。为提高轧制力预报精度,首先基于大量历史生产数据,通过主成分分析法对影响轧制力的因素进行处理和分析,选出权重较大的影响因子;其次选取现场代表钢种进行热模拟压缩实验,在此基础上提出基于极限学习机(ELM)的综合神经网络轧制力预报模型,即先通过化学成分计算出基准变形抗力,再将其作为轧制力神经网络输入变量进行轧制力预报。建模采用10折10次交叉验证确定最佳网络隐层节点数,并用现场实际生产过程数据对网络进行训练与测试。综合神经网络模型投入现场生产,轧制力预报相对误差±10%以内占比提高15.61%,钢板头部厚度命中率提高1.9%。  相似文献   

4.
分析了涟钢CSP生产线7机架精连轧机的板带轧制力模型,并针对其在实际生产过程中遇到的一些问题,提出了改进方案,即基于原轧制力模型进行优化,建立了新模型.同时确立了新的变形抗力模型方程.由优化前后的计算和对比分析可知,新模型的精度更好。在生产实际应用中对轧制力的预报准确率大幅度提高。  相似文献   

5.
基于遗传神经网络的不锈钢带冷轧轧制力模型   总被引:2,自引:0,他引:2  
张清东  徐兴刚  于孟  瞿标  李实 《钢铁》2008,43(12):46-0
 为了提高工厂从国外引进的以Bland Ford公式为基础的冷轧不锈钢带轧制力模型的计算精度,将基于遗传算法的BP神经网络与现有变形阻力和轧制压力解析数学模型相结合,建立了变形阻力和轧制压力修正模型。将在生产现场采集的部分过程记录数据,进行分类和预处理后作为训练样本用于训练遗传神经网络模型。将其他现场实测数据用于验证所建的轧制力模型,计算结果表明所建的轧制力模型具有较高的计算精度。  相似文献   

6.
何海涛  刘宏民  蒋岳峰 《钢铁》2007,42(1):55-58
针对双机架平整机的特性,以基态弯辊力下带材出口板形最好为准则,提出具有双机架平整机伸长率分配系数计算功能的轧制力模型;在此基础上,为了改善传统轧制力模型的预报精度,提出了先通过神经网络利用在线测得的实际数据预测变形抗力和摩擦因数,再与轧制力机理模型自学习过程相结合的轧制力预报新方法;并将其应用于宝钢1220双机架平整机的生产实践,结果表明此模型可以高精度地预报轧制压力.  相似文献   

7.
在中厚板生产过程中,用传统轧制力模型预报中厚板轧机轧制力时存在着较大的误差.为了提高中厚板轧机轧制力的预报精度,采用轧制力模型自适应与人工神经元网络相结合的方法进行中厚板轧制力的在线预报.应用结果表明,采用本方法预报轧制力时精度优于传统的数学模型,相对误差可以控制在±3%以内.  相似文献   

8.
冷轧轧制力计算模型是过程控制的核心和基础,而轧制力计算的基础为变形抗力,因此提高变形抗力计算精度是提高轧制力计算精度的一条有效途径。为此,笔者首先通过实际轧制力数据反算变形抗力,然后使用数据分析软件对变形抗力进行曲线拟合。由于根据曲线拟合公式计算出的轧制力与实际轧制力存在差距,因此为了提高轧制力的设定精度,根据带钢压下率对轧制力进行了补偿。现场实际应用证明,这种方法能有效提高轧制力设定精度。  相似文献   

9.
热连轧粗轧区立轧轧制力在线模型研究   总被引:1,自引:0,他引:1  
袁国明  李明雷  肖宏 《钢铁》2011,46(5):49-52
  针对热连轧粗轧区立轧轧制力在线模型预报精度低的问题,采用有限元软件DEFORM模拟了板坯热连轧粗轧区立轧过程,分析了板坯立轧过程轧制力预报精度低的原因。通过对有限元模拟结果的分析,给出了板坯立辊轧边时计算变形程度的新方法,并通过回归得到了适合板坯立轧轧制力计算的外端应力状态影响系数公式,进而得到了新的轧制力计算公式。经与现场实测数据比较,明显提高了立轧轧制力的预报精度。  相似文献   

10.
过程控制系统要求数学模型能正确反映规律性,运算简单,并且有较高的预报精度。轧制力计算模型是过程控制数学模型的核心,轧制力的计算精度直接影响到板形与板厚控制的精度。为了提高轧制力计算的精度,通过对冷轧轧制力特点的分析和计算模型的研究,我们在现有Hill公式的基础上,考虑张力对计算冷轧带钢轧制力的影响并借助于自学习计算功能,通过添加张力影响因子和模型自学习系数对Hill公式进行了改进,在保证轧制力预报精度的同时实现轧制力的在线计算。实际数据测试结果表明轧制力在线计算模型的预报精度误差在±5%以内。  相似文献   

11.
To improve the accuracy of rolling force prediction, some important force models were evaluated through applied computation for cold rolling of low carbon steel and aluminum alloy according to measured data on lab mill. The effects of model structure and three important variables ‐ flow stress, contact length and friction coefficient ‐ on the precision of computed force were quantitatively studied. Flow stress was measured with plane‐strain compression test, contact length was based on elastic flattening of work‐roll by Hitchcock, and friction‐coefficient was determined by rolling strain and numerical iteration. In steel rolling Bland & Ford integration model and Bryant & Osborn algebraic equation are better in accuracy than Ekelund and Parkins. In aluminum rolling all the models produce large deviations ΔFR = 10–20% if flow stress, contact length and friction coefficient are determined with the same method as steel rolling. The elastic deformation of aluminum strip is now taken into account for its low elastic modulus. An effective method to determine plastic and elastic contact has been developed in this investigation. The accuracy of force computation is obviously improved for aluminum rolling.  相似文献   

12.
低碳钢热连轧过程中工艺参数及组织演变的预测   总被引:6,自引:0,他引:6  
许云波  刘相华  王国栋 《钢铁》2002,37(9):47-51,38
采用二维有限元法对热连轧生产过程中沿带钢厚度方向的温度场分布进行了预测,建立了描述低碳钢软化行为的再结晶模型,并利用此模型对奥氏体再结晶动力学及微观组织演变进行了模拟计算,建立了计算精轧过程应力-应变曲线的流变应力模型,根据现场数据,对400MPa级超级钢细晶工业轧制实验的轧制力、轧制力矩和轧制功率进行了预测,结果与实测值吻合较好,反映了工业生产实际。  相似文献   

13.
 介绍预计算轧制规程中所使用的轧制力模型,在此基础上根据轧制过程中的仪表反馈数据开发出一种新的轧制力自学习模型。并对轧制力自学习系数层别划分的方法,依据和效果做了系统的分析。现场在线应用结果表明:给出的轧制力模型具有良好的预测精度,末道次轧制力预测误差可以控制在3%以内,其他道次可以控制在5%以内。  相似文献   

14.
陈婕 《铝加工》2010,(5):21-24
以经典轧制理论为依据,对1235铝合金热粗轧过程的轧制力模型进行研究。详细分析了轧辊的弹性压扁半径、应力状态系数和轧件变形抗力三个因素对轧制力的影响。用MATLAB建立的粗轧过程轧制力数学模型,使轧制力预测误差控制在5%~7%之间,基本可以满足现场实际生产的要求。  相似文献   

15.
以经典轧制理论为依据,对AA5052铝合金热粗轧过程的轧制力模型进行研究。详细分析了轧辊的弹性压扁半径、应力状态系数和轧件变形抗力三个因素对轧制力的影响。用MATLAB建立的粗轧过程轧制力数学模型,使轧制力预测误差控制在5%~7%之间,基本可以满足现场实际生产的要求。  相似文献   

16.
建立中厚板轧制压力计算模型,分别采用简单轧制情况和考虑轧辊弹性压扁情况下轧件与轧辊接触面积计算模型来预报轧制压力,分析轧辊弹性压扁对中厚板轧制力预报精度的影响。结果表明,在中厚板轧制过程中考虑轧辊弹性压扁的情况下,当预报轧制压力小于实测值时,轧制压力的预报精度提高;当预报轧制压力大于实测值时,轧制压力的预报精度降低。  相似文献   

17.
宜亚丽  韩晓铠  金贺荣 《钢铁》2020,55(9):69-80
 为实现带夹层复合板异步轧制力的预报,对直接添加薄板作为中间层的不锈钢复合板进行受力分析,依据各层金属变形特点以及轧件摩擦力方向的变化,将轧制变形区划分为5个分区,考虑复合板单元体截面法向应力与剪应力在各层金属间的线性分布,借助各个分区力平衡方程,建立了带夹层复合板异步轧制力数学模型;研究了剪切屈服应力比、辊径比、摩擦因数比对各层单元体应力分布的影响以及不同压下率下中性点和连接点的位置变化规律;运用MSC.Marc有限元仿真软件,对316L/Ni/EH40复合板进行了5道次异步轧制仿真,轧制变形区受力状态与理论模型基本一致,各道次轧制力大小与理论计算值误差在10%以内,结果表明,本模型可为带夹层复合板异步轧制力精准预报提供理论指导。  相似文献   

18.
 对宽厚不锈钢复合板层间真空热轧制变形过程进行受力分析,将热轧变形区分成I、II两个区间,运用主应力法建立各个区间的力平衡方程,根据边界条件和屈服准则求出各变形区的长度和各变形区所受压力,建立轧制力计算数学模型,在此基础上分析轧制工艺参数对宽厚不锈钢复合板轧制区间内不同应力分布的影响规律。将实际参数代入轧制模型计算公式,应用Matlab编程求得理论计算值,并与实测值进行比较。研究结果表明:轧制力模型可用于预测轧制力的大小,满足工程要求,轧制复合过程研究有助于优化成形工艺、预测产品性能,为今后此类材料的研究开发提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号