首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The results of the first consecutive 12 months of the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) global burned area product are presented. Total annual and monthly area burned statistics and missing data statistics are reported at global and continental scale and with respect to different land cover classes. Globally the total area burned labeled by the MODIS burned area product is 3.66 × 106 km2 for July 2001 to June 2002 while the MODIS active fire product detected for the same period a total of 2.78 × 106 km2, i.e., 24% less than the area labeled by the burned area product. A spatio-temporal correlation analysis of the two MODIS fire products stratified globally for pre-fire leaf area index (LAI) and percent tree cover ranges indicate that for low percent tree cover and LAI, the MODIS burned area product defines a greater proportion of the landscape as burned than the active fire product; and with increasing tree cover (> 60%) and LAI (> 5) the MODIS active fire product defines a relatively greater proportion. This pattern is generally observed in product comparisons stratified with respect to land cover. Globally, the burned area product reports a smaller amount of area burned than the active fire product in croplands and evergreen forest and deciduous needleleaf forest classes, comparable areas for mixed and deciduous broadleaf forest classes, and a greater amount of area burned for the non-forest classes. The reasons for these product differences are discussed in terms of environmental spatio-temporal fire characteristics and remote sensing factors, and highlight the planning needs for MODIS burned area product validation.  相似文献   

2.
In this article, artificial neural network (ANN) is adopted to predict photovoltaic (PV) panel behaviors under realistic weather conditions. ANN results are compared with analytical four and five parameter models of PV module. The inputs of the models are the daily total irradiation, air temperature and module voltage, while the outputs are the current and power generated by the panel. Analytical models of PV modules, based on the manufacturer datasheet values, are simulated through Matlab/Simulink environment. Multilayer perceptron is used to predict the operating current and power of the PV module. The best network configuration to predict panel current had a 3–7–4–1 topology. So, this two hidden layer topology was selected as the best model for predicting panel current with similar conditions. Results obtained from the PV module simulation and the optimal ANN model has been validated experimentally. Results showed that ANN model provide a better prediction of the current and power of the PV module than the analytical models. The coefficient of determination (R2), mean square error (MSE) and the mean absolute percentage error (MAPE) values for the optimal ANN model were 0.971, 0.002 and 0.107, respectively. A comparative study among ANN and analytical models was also carried out. Among the analytical models, the five-parameter model, with MAPE = 0.112, MSE = 0.0026 and R2 = 0.919, gave better prediction than the four-parameter model (with MAPE = 0.152, MSE = 0.0052 and R2 = 0.905). Overall, the 3–7–4–1 ANN model outperformed four-parameter model, and was marginally better than the five-parameter model.  相似文献   

3.
The implicit Colebrook–White equation has been widely used to estimate the friction factor for turbulent fluid-flow in rough-pipes. In this paper, the state-of-the-art review for the most currently available explicit alternatives to the Colebrook–White equation, is presented. An extensive comparison test was established on the 20 × 500 grid, for a wide range of relative roughness (ε/D) and Reynolds number (R) values (1 × 10?6 ? ε/D ? 5 × 10?2; 4 × 103 ? R ? 108), covering a large portion of turbulent flow zone in Moody’s diagram. Based on the comprehensive error analysis, the magnitude points in which the maximum absolute and the maximum relative error are occurred at the pair of ε/D and R values, are observed. A limiting case of the most of these approximations provided friction factor estimates that are characterized by a mean absolute error of 5 × 10?4, a maximum absolute error of 4 × 10?3 whereas, a mean relative error of 1.3% and a maximum relative error of 5.8%, over the entire range of ε/D and R values, respectively. For practical purposes, the complete results for the maximum and the mean relative errors versus the 20 sets of ε/D value, are also indicated in two comparative figures. The examination results for error properties of these approximations gives one an opportunity to practically evaluate the most accurate formula among of all the previous explicit models; and showing in this way its great flexibility for estimating turbulent flow friction factor. Comparative analysis for the mean relative error profile revealed, the classification for the best-fitted six equations examined was in a good agreement with those of the best model selection criterion claimed in the recent literature, for all performed simulations.  相似文献   

4.
Research has shown that remote sensing techniques can be used for assessing live fuel moisture content (LFMC) from space. The need for dynamic monitoring of the fire risk environment favors the use of fast, site-specific, empirical models for assessing local vegetation moisture status, albeit with some uncertainties. These uncertainties may affect the accuracy of decisions made by fire managers using remote sensing derived LFMC. Consequently, the analysis of these LFMC retrieval uncertainties and their impact on applications, such as fire spread prediction, is needed to ensure the informed use of remote sensing derived LFMC measurements by fire managers. The Okefenokee National Wildlife Refuge, one of the most fire-prone regions in the southeastern United States was chosen as our study area. Our study estimates the uncertainties associated with empirical site specific retrievals using NDWI (Normalized Difference Water Index; (R0.86R1.24) / (R0.86 + R1.24)) and NDII (Normalized Difference Infrared Index; (R0.86R1.64) / (R0.86 + R1.64)) that are simulated by coupled leaf and canopy radiative transfer models. In order to support the findings from those simulations, a second approach estimates uncertainties using actual MODIS derived indices over Georgia Forestry Commission stations that provide NFDRS model estimates of LFMC. Finally, we used the FARSITE surface fire behavior model to examine the sensitivity of fire spread rates to live fuel moisture content for the NFDRS high pocosin and southern rough fuel models found in Okefenokee. This allowed us to evaluate the effectiveness of satellite based LFMC estimations for use in fire behavior predictions. Sensitivity to LFMC (measured as percentage of moisture weight per unit dry weight of fuel) was analyzed in terms of no-wind no-slope spread rates as well as normalized spread rates. Normalized spread rates, defined as the ratio of spread rate at a particular LFMC to the spread rate at LFMC of 125 under similar conditions, were used in order to make the results adaptable to any wind-slope conditions. Our results show that NDWI has a stronger linear relationship to LFMC than NDII, and can consequently estimate LFMC with lesser uncertainty. Uncertainty analysis shows that 66% of NDWI based LFMC retrievals over non-sparsely vegetated regions are expected to have errors less than 32, while 90% of retrievals should be within an error margin of 56. In pocosin fuel models, under low LFMC conditions (< 100), retrieval errors could lead to normalized spread rate errors of 6.5 which may be equivalent to an error of 47 m/h in no-wind no-slope conditions. For southern rough fuel models, when LFMC < 175, LFMC retrieval errors could amount to normalized spread rate errors of 0.6 or an equivalent error of 9.3 m/h in no-wind no-slope conditions. These spread rate error estimates represent approximately the upper bound of errors resulting from uncertainties in empirical retrievals of LFMC over forested regions.  相似文献   

5.
Nuisance blue-green algal blooms contribute to aesthetic degradation of water resources by means of accelerated eutrophication, taste and odor problems, and the production of toxins that can have serious adverse human health effects. Current field-based methods for detecting blooms are costly and time consuming, delaying management decisions. Methods have been developed for estimating phycocyanin concentration, the accessory pigment unique to freshwater blue-green algae, in productive inland water. By employing the known optical properties of phycocyanin, researchers have evaluated the utility of field-collected spectral response patterns for determining concentrations of phycocyanin pigments and ultimately blue-green algal abundance. The purpose of this research was to evaluate field spectroscopy as a rapid cyanobacteria bloom assessment method. In-situ field reflectance spectra were collected at 54 sampling sites on two turbid reservoirs on September 6th and 7th in Indianapolis, Indiana using ASD Fieldspec (UV/VNIR) spectroradiometers. Surface water samples were analyzed for in-vitro pigment concentrations and other physical and chemical water quality parameters. Semi-empirical algorithms by Simis et al. [Simis, S., Peters, S., Gons, H. (2005). Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. American Society of Limnology and Oceanography 50(11): 237–245] were applied to the field spectra to predict chlorophyll a and phycocyanin absorption at 665 nm and 620 nm, respectively. For estimation of phycocyanin concentration, a specific absorption coefficient of 0.0070 m2 mg PC-1 for phycocyanin at 620 nm, aPC?(620), was employed, yielding an r2 value of 0.85 (n = 48, p < 0.0001), mean relative residual value of 0.51 (σ = 1.41) and root mean square error (RMSE) of 19.54 ppb. Results suggest this algorithm could be a robust model for estimating phycocyanin. Error is highest in water with phycocyanin concentrations of less than 10 ppb and where phycocyanin abundance is low relative to chlorophyll a. A strong correlation between measured phycocyanin concentrations and biovolume measurements of cyanobacteria was also observed (r = 0.89), while a weaker relationship (r = 0.66) resulted between chlorophyll a concentration and cyanobacterial biovolume.  相似文献   

6.
A polynomial P(X)  = Xd + ad  1Xd  1 + ⋯ is called lacunary when ad  1 =  0. We give bounds for the roots of such polynomials with complex coefficients. These bounds are much smaller than for general polynomials.  相似文献   

7.
This study presents two Genetic Programming (GP) models for damping ratio and shear modulus of sand–mica mixtures based on experimental results. The experimental database used for GP modelling is based on a laboratory study of dynamic properties of saturated coarse rotund sand and mica mixtures with various mix ratios under different effective stresses. In the tests, shear modulus, and damping ratio of the geomaterials have been measured for a strain range of 0.001% up to 0.1% using a Stokoe resonant column testing apparatus. The input variables in the developed NN models are the mica content, effective stress and strain, and the outputs are damping ratio and shear modulus. The performance of accuracies of proposed NN models are quite satisfactory (R2 = 0.95 for damping ratio and R2 = 0.98 for shear modulus).  相似文献   

8.
Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale planning and modeling of outbreak dynamics. We used multi-temporal, multi-seasonal Landsat data and 128 ground truth plots (and 120 additional validation plots) to map basal area (BA), for 6.4 million hectares of forest in northern Minnesota and neighboring Ontario. Partial least-squares (PLS) regression was used to determine relationships between ground data and Landsat sensor data. Subsequently, BA was mapped for all forests, as well as for two specific host tree genera (Picea and Abies). These PLS regression analyses yielded estimates for overall forest BA with an R2 of 0.62 and RMSE of 4.67 m2 ha? 1 (20% of measured BA), white spruce relative BA with an R2 of 0.88 (RMSE = 12.57 m2 ha? 1 [20% of measured]), and balsam fir relative BA with an R2 of 0.64 (RMSE = 6.08 m2 ha? 1 [33% of measured]). We also used this method to estimate the relative BA of deciduous and coniferous species, each with R2 values of 0.86 and RMSE values of 9.89 m2 ha? 1 (23% of measured) and 9.78 m2 ha? 1 (16% of measured), respectively. Of note, winter imagery (with snow cover) and shortwave infrared-based indices – especially the shortwave infrared/visible ratio – strengthened the models we developed. Because ground measurements were made largely in forest stands containing spruce and fir, modeled results are not applicable to stands dominated by non-target conifers such as pines and cedar. PLS regression has proven to be an effective modeling tool for regional characterization of forest structure within spatially heterogeneous forests using multi-temporal Landsat sensor data.  相似文献   

9.
The self-shadowing of conifer canopies results from the size and arrangement of trees within a stand and is a first-order term controlling radiance from forested terrain at common pixel scales of tens of meters. Although self-shadowing is a useful attribute for forest remote-sensing classification, compensation for the topographic effects of self-shadowing has proven problematic. This study used airborne canopy LiDAR measurements of 80 Pacific Northwest, USA conifer stands ranging in development stage from pre-canopy closure to old-growth in order to model canopy self-shadowing for four solar zenith angles (SZA). The shadow data were compared to physical measurements used to characterize forest stands, and were also used to test and improve terrain compensation models for remotely sensed images of forested terrain. Canopy self-shadowing on flat terrain strongly correlates with the canopy's geometric complexity as measured by the rumple index (canopy surface area/ground surface area) (R2 = 0.94–0.87 depending on SZA), but is less correlated with other stand measurements: 95th percentile canopy height (R2 = 0.68), mean diameter at breast height (dbh) (R2 = 0.65), basal area ha? 1 (R2 = 0.18), and canopy stem count ha? 1 (R2 = 0.18). The results in this paper support interpretation of self-shadowing as a function of canopy complexity, which is an important ecological characteristic in its own right. Modeling of canopy self-shadowing was used to assess the accuracy of the Sun-Canopy-Sensor (SCS) topographic correction, and to develop a new empirical Adaptive Shade Compensation (ASC) topographic compensation model. ASC used measured shadow (as an estimate of canopy complexity) and the SCS term (to describe the illumination geometry) as independent variables in multiple regressions to determine the topographic correction. The ASC model provided more accurate radiance corrections with limited variation in results across the full range of canopy complexities and incidence angles.  相似文献   

10.
This study investigated the effects of upstream stations’ flow records on the performance of artificial neural network (ANN) models for predicting daily watershed runoff. As a comparison, a multiple linear regression (MLR) analysis was also examined using various statistical indices. Five streamflow measuring stations on the Cahaba River, Alabama, were selected as case studies. Two different ANN models, multi layer feed forward neural network using Levenberg–Marquardt learning algorithm (LMFF) and radial basis function (RBF), were introduced in this paper. These models were then used to forecast one day ahead streamflows. The correlation analysis was applied for determining the architecture of each ANN model in terms of input variables. Several statistical criteria (RMSE, MAE and coefficient of correlation) were used to check the model accuracy in comparison with the observed data by means of K-fold cross validation method. Additionally, residual analysis was applied for the model results. The comparison results revealed that using upstream records could significantly increase the accuracy of ANN and MLR models in predicting daily stream flows (by around 30%). The comparison of the prediction accuracy of both ANN models (LMFF and RBF) and linear regression method indicated that the ANN approaches were more accurate than the MLR in predicting streamflow dynamics. The LMFF model was able to improve the average of root mean square error (RMSEave) and average of mean absolute percentage error (MAPEave) values of the multiple linear regression forecasts by about 18% and 21%, respectively. In spite of the fact that the RBF model acted better for predicting the highest range of flow rate (flood events, RMSEave/RBF = 26.8 m3/s vs. RMSEave/LMFF = 40.2 m3/s), in general, the results suggested that the LMFF method was somehow superior to the RBF method in predicting watershed runoff (RMSE/LMFF = 18.8 m3/s vs. RMSE/RBF = 19.2 m3/s). Eventually, statistical differences between measured and predicted medians were evaluated using Mann-Whitney test, and differences in variances were evaluated using the Levene's test.  相似文献   

11.
A blue organic light-emitting device, based on an iridium phosphorescent dopant in a polyvinylcarbazole host, has been modified by the addition of an external CaS:Eu inorganic phosphor layer. By incorporating a surfactant in the phosphor mixture, a uniform coating could be achieved by drop-casting. The resulting hybrid device exhibited white light emission, with Commission Internationale de l’Eclairage, CIE (x, y) coordinates of x = 0.32, y = 0.35. No significant change in these coordinates was observed for current densities in the range 25–510 A m?2. The maximum power efficiencies of the white device was 2.3 lm W?1 at a brightness of 254 cd m?2.  相似文献   

12.
Dicumyl peroxide (DCPO), is produced by cumene hydroperoxide (CHP) process, is utilized as an initiator for polymerization, a prevailing source of free radicals, a hardener, and a linking agent. DCPO has caused several thermal explosion and runaway reaction accidents in reaction and storage zone in Taiwan because of its unstable reactive property. Differential scanning calorimetry (DSC) was used to determine thermokinetic parameters including 700 J g–1 of heat of decomposition (ΔHd), 110 °C of exothermic onset temperature (T0), 130 kJ mol–1 of activation energy (Ea), etc., and to analyze the runaway behavior of DCPO in a reaction and storage zone. To evaluate thermal explosion of DCPO with storage equipment, solid thermal explosion (STE) and liquid thermal explosion (LTE) of thermal safety software (TSS) were applied to simulate storage tank under various environmental temperatures (Te). Te exceeding the T0 of DCPO can be discovered as a liquid thermal explosion situation. DCPO was stored under room temperature without sunshine and was prohibited exceeding 67 °C of self-accelerating decomposition temperature (SADT) for a tank (radius = 1 m and height = 2 m). SADT of DCPO in a box (width, length and height = 1 m, respectively) was determined to be 60 °C. The TSS was employed to simulate the fundamental thermal explosion behavior in a large tank or a drum. Results from curve fitting demonstrated that, even at the earlier stage of the reaction in the experiments, ambient temperature could elicit exothermic reactions of DCPO. To curtail the extent of the risk, relevant hazard information is quite significant and must be provided in the manufacturing process.  相似文献   

13.
We describe probabilistic primality tests applicable to integers whose prime factors are all congruent to 1 mod r where r is a positive integer;r =  2 is the Miller–Rabin test. We show that if ν rounds of our test do not find n   =  (r +  1)2composite, then n is prime with probability of error less than (2 r)  ν. Applications are given, first to provide a probabilistic primality test applicable to all integers, and second, to give a test for values of cyclotomic polynomials.  相似文献   

14.
The discovery of mammalian target of rapamycin (mTOR) kinase inhibitors has always been a research hotspot of antitumor drugs. Consensus scoring used in the docking study of mTOR kinase inhibitors usually improves hit rate of virtual screening. Herein, we attempt to build a series of consensus scoring models based on a set of the common scoring functions. In this paper, twenty-five kinds of mTOR inhibitors (16 clinical candidate compounds and 9 promising preclinical compounds) are carefully collected, and selected for the molecular docking study used by the Glide docking programs within the standard precise (SP) mode. The predicted poses of these ligands are saved, and revaluated by twenty-six available scoring functions, respectively. Subsequently, consensus scoring models are trained based on the obtained rescoring results by the partial least squares (PLS) method, and validated by Leave-one-out (LOO) method. In addition, three kinds of ligand efficiency indices (BEI, SEI, and LLE) instead of pIC50 as the activity could greatly improve the statistical quality of build models. Two best calculated models 10 and 22 using the same BEI indice have following statistical parameters, respectively: for model 10, training set R2 = 0.767, Q2 = 0.647, RMSE = 0.024, and for test set R2 = 0.932, RMSE = 0.026; for model 22, raining set R2 = 0.790, Q2 = 0.627, RMSE = 0.023, and for test set R2 = 0.955, RMSE = 0.020. These two consensus scoring model would be used for the docking virtual screening of novel mTOR inhibitors.  相似文献   

15.
Impaired water quality caused by human activity and the spread of invasive plant and animal species has been identified as a major factor of degradation of coastal ecosystems in the tropics. The main goal of this study was to evaluate the performance of AnnAGNPS (Annualized Non-Point Source Pollution Model), in simulating runoff and soil erosion in a 48 km2 watershed located on the Island of Kauai, Hawaii. The model was calibrated and validated using 2 years of observed stream flow and sediment load data. Alternative scenarios of spatial rainfall distribution and canopy interception were evaluated. Monthly runoff volumes predicted by AnnAGNPS compared well with the measured data (R2 = 0.90, P < 0.05); however, up to 60% difference between the actual and simulated runoff were observed during the driest months (May and July). Prediction of daily runoff was less accurate (R2 = 0.55, P < 0.05). Predicted and observed sediment yield on a daily basis was poorly correlated (R2 = 0.5, P < 0.05). For the events of small magnitude, the model generally overestimated sediment yield, while the opposite was true for larger events. Total monthly sediment yield varied within 50% of the observed values, except for May 2004. Among the input parameters the model was most sensitive to the values of ground residue cover and canopy cover. It was found that approximately one third of the watershed area had low sediment yield (0–1 t ha−1 y−1), and presented limited erosion threat. However, 5% of the area had sediment yields in excess of 5 t ha−1 y−1. Overall, the model performed reasonably well, and it can be used as a management tool on tropical watersheds to estimate and compare sediment loads, and identify “hot spots” on the landscape.  相似文献   

16.
This paper presents the internal ballistic design, fabrication procedure, and performance evaluation of a micro-electro mechanical systems (MEMS) solid propellant thruster array chip. The internal ballistic design was carried out to predict the performance of the thruster. Two different ignition models were used. The numerical results gave a maximum thrust of 3840 mN, and a total impulse of 0.42 mNs at the local ignition model. A photosensitive glass wafer only was used as the bare material for the thruster. The stability of the micro-igniter was improved by using a glass membrane with a thickness of tens of microns. The average thickness of the membrane was 35 μm. The proposed micro-igniter had a level of power consumption appropriate to ignite the solid propellant. The thermal, electrical, and mechanical characteristics of the fabricated micro-igniter were measured. The solid propellant was loaded into the propellant chamber without resort to a special technique due to the high structural stability of the glass membrane. An MEMS solid propellant thruster (MSPT) array was fabricated through anisotropic etching of photosensitive glass. An ignition control system was developed to control the ignition sequence. Ignition and combustion tests of the fully assembly MEMS thruster were performed successfully. The minimum ignition delay was 27.5 ms with an ignition energy of 19.3 mJ. The average of the measured maximum thrust and total impulse were 3619 mN and 0.381 mNs, respectively.  相似文献   

17.
Multi-temporal C-band SAR data (C-HH and C-VV), collected by ERS-2 and ENVISAT satellite systems, are compared with field observations of hydrology (i.e., inundation and soil moisture) and National Wetland Inventory maps (U.S. Fish and Wildlife Service) of a large forested wetland complex adjacent to the Patuxent and Middle Patuxent Rivers, tributaries of the Chesapeake Bay. Multi-temporal C-band SAR data were shown to be capable of mapping forested wetlands and monitoring hydroperiod (i.e., temporal fluctuations in inundation and soil moisture) at the study site, and the discrimination of wetland from upland was improved with 10 m digital elevation data. Principal component analysis was used to summarize the multi-temporal SAR data sets and to isolate the dominant temporal trend in inundation and soil moisture (i.e., relative hydroperiod). Significant positive, linear correlations were found between the first principal component and percent area flooded and soil moisture. The correlation (r2) between the first principal component (PC1) of multi-temporal C-HH SAR data and average soil moisture was 0.88 (p = < .0001) during the leaf-off season and 0.87 (p = < .0001) during the leaf-on season, while the correlation between PC1 and average percent area inundated was 0.82 (p = < .0001) and 0.47 (p = .0016) during the leaf-off and leaf-on seasons, respectively. When compared to field data, the SAR forested wetland maps identified areas that were flooded for 25% of the time with 63–96% agreement and areas flooded for 5% of the time with 44–89% agreement, depending on polarization and time of year. The results are encouraging and justify further studies to attempt to quantify the relative SAR-derived hydroperiod classes in terms of physical variables and also to test the application of SAR data to more diverse landscapes at a broader scale. The present evidence suggests that the SAR data will significantly improve routine wooded wetland mapping.  相似文献   

18.
19.
In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered.Among continuum mechanics models, the numerical model SHWCIN uses the depth averaged Saint Venant approach, in which the avalanche thickness (H) is very much smaller than its extent parallel to the bed (L). The material is assumed to be incompressible and the mass and the momentum equations are written in a depth averaged form.The SHWCIN code, based on the hypothesis of isotropy of normal stresses (σxx = σyy = σzz), has been modified (new code: RASH3D) in order to allow for the assumption of anisotropy of normal stresses (σxx = zz; σyy = zz).A comparison among the results obtained by assuming isotropy or anisotropy is given through the back analysis of a set of laboratory experiments [Gray, J.M.N.T., Wieland, M., Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, Series A 455(1841)] and of a case history of rock avalanche (Frank slide, Canada).The carried out simulations have also underlined the importance of using a different earth pressure coefficient value (K) for directions of convergence and of divergence of the flux.  相似文献   

20.
Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western U.S. rivers to control introduced shrubs in the genus Tamarix. Part of the motivation to control Tamarix is to salvage water for human use. Information is needed on the impact of beetles on Tamarix seasonal leaf production and subsequent water use over wide areas and multiple cycles of annual defoliation. Here we combine ground data with high resolution phenocam imagery and moderate resolution (Landsat) and coarser resolution (MODIS) satellite imagery to test the effects of beetles on Tamarix evapotranspiration (ET) and leaf phenology at sites on six western rivers. Satellite imagery covered the period 2000 to 2010 which encompassed years before and after beetle release at each study site. Phenocam images showed that beetles reduced green leaf cover of individual canopies by about 30% during a 6–8 week period in summer, but plants produced new leaves after beetles became dormant in August, and over three years no net reduction in peak summer leaf production was noted. ET was estimated by vegetation index methods, and both Landsat and MODIS analyses showed that beetles reduced ET markedly in the first year of defoliation, but ET recovered in subsequent years. Over all six sites, ET decreased by 14% to 15% by Landsat and MODIS estimates, respectively. However, results were variable among sites, ranging from no apparent effect on ET to substantial reduction in ET. Baseline ET rates before defoliation were low, 394 mm yr? 1 by Landsat and 314 mm yr? 1 by MODIS estimates (20–25% of potential ET), further constraining the amount of water that could be salvaged. Beetle–Tamarix interactions are in their early stage of development on this continent and it is too soon to predict the eventual extent to which Tamarix populations will be reduced. The utility of remote sensing methods for monitoring defoliation was constrained by the small area covered by each phenocam image, the low temporal resolution of Landsat, and the low spatial resolution of MODIS imagery. Even combined image sets did not adequately reveal the details of the defoliation process, and remote sensing data should be combined with ground observations to develop operational monitoring protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号