首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有可生存虚拟网络链路保护方法无差别对待所有虚拟链路、备份资源消耗多且故障后网络恢复时延长的问题,该文提出一种核心链路感知的可生存虚拟网络链路保护(CLA-SVNLP)方法。首先,综合考虑虚拟链路动态和静态两方面因素构建虚拟链路核心度度量模型,依据虚拟网络生存性需求,对核心度较高的虚拟链路进行备份保护;其次,将p圈引入可生存虚拟网络链路保护,依据虚拟网络特点构建p圈,为核心虚拟链路提供1:N保护,即每条核心虚拟链路平均消耗1/N条的备份链路带宽资源以减少备份链路资源消耗,并将单物理链路保护问题转化为多个p圈内的单虚拟链路保护问题;最后网络编码技术与p圈结合,将备份链路对核心虚拟链路提供的1:N保护转化为1+N保护,避免了故障后定位、检测及数据重传。仿真结果表明,该方法提高了备份资源利用率且缩短了故障后的网络恢复时延。  相似文献   

2.
提出了一个新的动态透明的虚拟网络嵌入(VNE)算法。该算法基于弹性光传输基础设施,同时考虑节点映射和链路映射,用于光正交频分复用(O-0FDM)的网络虚拟化。对每一个虚拟光网络(VON)的请求,该算法首先根据各光纤链路的频谱使用将底层光网络转化成一个分层辅助图,然后在该辅助图的单层上应用一个考虑了所有底层节点的本地信息的节点映射完成链接映射。仿真结果表明,该算法考虑了O-OFDM网络的独特性,并且由于算法提供较低的VON阻塞概率,优于直接应用VNE的参考算法。实际拓扑结构的仿真结果也表明,嵌入的底层路径的平均距离很好地被控制在O-OFDM信号的典型传输范围内。  相似文献   

3.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

4.
Network virtualization (NV) has ubiquitously emerged as an indispensable attribute to enable the success of the forthcoming virtualized networks (eg, 5G network and smart Internet of Things [IoT]). Virtual network embedding (VNE) is the major challenge in NV that allows multiple heterogeneous virtual networks (VNs) to simultaneously coexist on a shared substrate infrastructure. A great number of VNE algorithms have been proposed, but over the past decades, most of them are only targeting for VNE node mapping. In this paper, we propose two distributed parallel genetic algorithms, which are based on two versions of crossover and mutation schemes, for online VN link embedding problems with low latency and high efficiency. Furthermore, we conduct a time analysis on the executing time of independently distributed parallel computing machines in details. This comprehensive analysis validates the parallel computing scalability on an identical number of predefined parallel machines. Extensive simulations have shown that our proposed algorithms can achieve better performance than integer linear programming (ILP)–based solutions while meeting the stringent time requirements for online VN embedding applications. Our proposed algorithms yield superior performance in running time with 32.78% up to 1727.8% faster than existing popular VNE algorithms. Additionally, the theoretical analysis indicates that the execution time can be reduced to logarithmic times by applying proposed distributed parallel algorithms.  相似文献   

5.
刘光远  徐明伟 《电子学报》2020,48(7):1343-1347
本文研究了可生存虚拟网络多层映射问题,首先对其建立了整数线性规划模型(ILP),然后针对较大规模问题提出一种高效的启发式算法VNP-SVNME对其进行求解.实验表明,VNP-SVNME算法的资源映射开销相对ILP仅平均高15%,且优于现有的启发式可生存算法.此外,VNP-SVNME算法的映射时间相对ILP大大降低,可以满足在线虚拟网络映射的需求.  相似文献   

6.
罗娟  刘川川  李仁发 《通信学报》2012,33(Z1):88-95
针对无线网络链路可靠性差影响无线虚拟网络的分配这一问题,提出了一种基于链路可靠性的无线虚拟网络分配算法(WVNEA-LR)。该算法通过物理网络拓扑预处理和允许同一个虚拟请求中的多个虚拟节点映射到同一个物理节点上的方法,提高了Vn构建成功率和节约了物理链路资源。利用Q因子改善了因拓扑分配稀疏时Vn构建成功率低的问题。此外,WVNEA-LR的节点分配为链路分配作了准备,并通过选择可靠性高的承载路径保证了分配后的Vn具有高可靠性。仿真结果表明, WVNEA-LR获得较好的虚拟网络构建成功率、较高的收益成本比和资源利用率。  相似文献   

7.
针对传统网络切片映射方法资源利用率低且可靠性差的问题,该文提出了可靠性感知的网络切片(NS)重构及映射策略(RNSRE)。首先,建立了面向可靠性和资源的网络切片可靠映射效用函数。其次,综合考虑虚拟网络功能(VNF)的资源需求和位置约束,提出了一种VNF可靠性需求的度量方法。在此基础上,以最大化VNF可靠部署收益的同时最小化链路带宽资源开销为目标,建立了切片可靠映射整数线性规划模型。最后,针对不同的网络切片类型,提出了基于邻域搜索的网络切片映射算法和关键VNF备份的网络切片重构映射算法。仿真结果表明,所提算法在满足VNF可靠性需求的同时,提高了资源利用率,降低了映射的开销。  相似文献   

8.
Virtual network (VN) embedding is a major challenge in network virtualization. In this paper, we aim to increase the acceptance ratio of VNs and the revenue of infrastructure providers by optimizing VN embedding costs. We first establish two models for VN embedding: an integer linear programming model for a substrate network that does not support path splitting and a mixed integer programming model when path splitting is supported. Then we propose a unified enhanced particle swarm optimization‐based VN embedding algorithm, called VNE‐UEPSO, to solve these two models irrespective of the support for path splitting. In VNE‐UEPSO, the parameters and operations of the particles are well redefined according to the VN embedding context. To reduce the time complexity of the link mapping stage, we use shortest path algorithm for link mapping when path splitting is unsupported and propose greedy k‐shortest paths algorithm for the other case. Furthermore, a large to large and small to small preferred node mapping strategy is proposed to achieve better convergence and load balance of the substrate network. The simulation results show that our algorithm significantly outperforms previous approaches in terms of the VN acceptance ratio and long‐term average revenue. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
该文基于Openflow网络提出了具有容错能力的虚拟网络映射模型,并且采用蚁群算法对其进行求解。针对虚拟网络的故障恢复机制,提出了区分用户优先级的故障恢复算法(Priority_Diff),该算法为用户提供不同的网络可靠性级别,对高级用户采用提前映射的备份路径替代故障链路,对低级用户重新映射故障链路;设计了故障备份链路重映射(BLRM)算法,将故障链路中的备份资源迁移到相邻链路,增强了备份链路的可用性。最后,通过仿真实验,从虚拟网络故障修复率、虚拟网络成功运行率和工作链路资源利用率3个方面验证了所提算法的优越性。  相似文献   

10.
In IP-over-wavelength division multiplexing networks, a virtual topology is placed over the physical topology of the optical network. Given that a simple link failure or a node failure on the physical topology can cause a significant loss of information, an important challenge is to make the routing of the virtual topology on to the physical topology survivable. This problem is known as survivable virtual topology mapping (SVTM) and is known to be an NP-complete problem. So far, this problem has been optimally solved for small instances by the application of integer linear programming and has been sub-optimally solved for more realistic instances by heuristic strategies such as ant colony optimization and genetic algorithms. In this paper, we introduce the application of differential evolution (DE) to solve the SVTM problem and enhancements based on DE are proposed as well. Three algorithms based on DE are developed. The enhanced variants have better convergence rate, get better quality of solutions and require few control parameters. We present the impact of these parameters on the system’s performance improvement. Algorithms are evaluated in different test bench optical networks, as NSFnet and USA, demonstrating that the enhanced DE algorithm overcomes the other two, for small instances. The three algorithms reach a 100  survivable mapping for small instances. The three algorithms also find positive survivable mappings and reduce the network wavelength links. Results show the effectiveness and efficiency of the proposed algorithms.  相似文献   

11.
Network survivability is becoming more and more important for the plenty of information each single fiber carries. Extra network resources are needed to increase network survivability level. In this paper, we investigate the problem of how to augment the network topology with adding new links and allocate spare capacity to maximize the service restorability against node failures in SDH/SONET mesh networks. A scheme called maximal node-disjoint backup paths provisioning with topology augmentation is proposed to tackle the problem, and another scheme called globally optimized path provisioning with topology augmentation, which allows adjusting the existing working paths of network flows, is investigated to optimize the augmented network globally. Both schemes are formulated as mixed integer linear programming models. Furthermore, heuristic algorithms are investigated to be implemented in software. Three algorithms, i.e., added links searching method, successive maximal survivable routing method, and random sequence routing convergence method, are designed and compared. Simulation results show the effectiveness of the algorithms.  相似文献   

12.
光纤—无线融合(fiber-wireless,FiWi)宽带接入网的出现不仅为随时随地的灵活宽带接入提供了新的技术参考,同时也为可生存宽带接入网的低成本设计增加了研究契机。研究了可生存FiWi接入网的网络规划问题,提出一种基于无线重路由保护的可生存网络规划方法。当任意光纤链路断裂时,失效的光网络单元可通过无线重路由将业务转移到其他可用的光网络单元承载。重点解决了无线路由器部署、备份射频接口配置及光网络单元容量分配的联合优化问题,目标是通过最小化网络部署成本实现业务的完全保护。采用整数线性规划方法获得了小规模网络规划问题的最优解,同时提出了适用于大规模网络规划问题的启发式算法。仿真结果证实了所提方法在降低网络部署成本方面的有效性。  相似文献   

13.
Network function virtualization can significantly improve the flexibility and effectiveness of network appliances via a mapping process called service function chaining. However, the failure of any single virtualized network function causes the breakdown of the entire chain, which results in resource wastage, delays, and significant data loss. Redundancy can be used to protect network appliances; however, when failures occur, it may significantly degrade network efficiency. In addition, it is difficult to efficiently map the primary and backups to optimize the management cost and service reliability without violating the capacity, delay, and reliability constraints, which is referred to as the reliability‐aware service chaining mapping problem. In this paper, a mixed integer linear programming formulation is provided to address this problem along with a novel online algorithm that adopts the joint protection redundancy model and novel backup selection scheme. The results show that the proposed algorithm can significantly improve the request acceptance ratio and reduce the consumption of physical resources compared to existing backup algorithms.  相似文献   

14.
The design of survivable mesh based communication networks has received considerable attention in recent years. One task is to route backup paths and allocate spare capacity in the network to guarantee seamless communications services survivable to a set of failure scenarios. This is a complex multi-constraint optimization problem, called the spare capacity allocation (SCA) problem. This paper unravels the SCA problem structure using a matrix-based model, and develops a fast and efficient approximation algorithm, termed successive survivable routing (SSR). First, per-flow spare capacity sharing is captured by a spare provision matrix (SPM) method. The SPM matrix has a dimension the number of failure scenarios by the number of links. It is used by each demand to route the backup path and share spare capacity with other backup paths. Next, based on a special link metric calculated from SPM, SSR iteratively routes/updates backup paths in order to minimize the cost of total spare capacity. A backup path can be further updated as long as it is not carrying any traffic. Furthermore, the SPM method and SSR algorithm are generalized from protecting all single link failures to any arbitrary link failures such as those generated by Shared Risk Link Groups or all single node failures. Numerical results comparing several SCA algorithms show that SSR has the best trade-off between solution optimality and computation speed.  相似文献   

15.
在网络功能虚拟化(NFV)环境中,针对服务功能链(SFC)部署时的可靠性问题,该文提出对备份虚拟网络功能选择、备份实例放置和服务功能链部署的联合优化方法。首先,定义一个单位开销可靠性提高值的虚拟网络功能衡量标准,改进备份虚拟网络功能选择方法;其次,采用联合备份的方式调整相邻备份实例之间的放置策略,以降低带宽资源开销;最后,将整个服务功能链可靠性保障的部署问题构建成整数线性规划模型,并提出一种基于最短路径的启发式算法,克服整数线性规划求解的复杂性。仿真结果表明,该方法在优先满足网络服务可靠性需求的同时,优化资源配置,提高了请求接受率。  相似文献   

16.
Routing and wavelength assignment is an important resource allocation method of all-optical network.Aiming at the problem of traditional method combined with the new architecture,an adaptive multi-objective routing and wavelength assignment method based on SDN was proposed,which could realize the allocation of link resources of all-optical network through self-regulation.Based on the SDN service function chain model,service scheduling time and link service quality were taken as the scheduling objective,routing and wavelength assignment problem was constructed as the 0-1 integer programming problem,meanwhile,binary hybrid topology particle swarm optimization algorithm was used to optimize the network resources for optimal scheduling.The simulation results show that the proposed method is superior to the traditional classical algorithms in the test of recovery time,blocking rate and resource utilization.  相似文献   

17.
Hybrid survivability approaches for optical WDM mesh networks   总被引:1,自引:0,他引:1  
This paper studies the problem of providing recovery from link failures in optical wavelength division multiplexing (WDM) networks. One of the widely studied mechanisms is dynamic link restoration, which provides recovery by determining restoration paths around a link after a failure occurs. This mechanism leads to a lower backup resource utilization, fast failure signaling rate, and a scalable operation. However, one of the main drawbacks of uncoordinated dynamic restoration is the inability to provide a 100% recovery for all connections, especially at high network loads. An alternate solution is proactive protection, where backup capacity is reserved during connection setup that can guarantee recovery under certain conditions (e.g., single link failures) but requires higher backup capacity and has low spare capacity utilization when failures do not occur. This paper presents two hybrid survivability approaches that combine the positive effects of restoration and protection. The proposed algorithms make use of available or collected network state information, such as link load, to identify critical links or segments in the network that are then proactively protected. The overall goal of the proposed approaches is to improve the restoration efficiency by providing a tradeoff between proactive protection and dynamic restoration. This paper presents a detailed performance analysis of the proposed algorithms. Experimental results show that under high loads, both the proposed approaches maintain a consistent restoration efficiency of at least 10%, or higher, when compared to the basic restoration scheme.  相似文献   

18.
In order to solve the problem of virtual network mapping,a mapping method based on ant colony hybrid genetic algorithm was put forward under SDN environment,which established a linear programming model for virtual network mapping,and divided the mapping process into node mapping and link mapping.Firstly,the fusion algorithm was adopted,in which virtual nodes were mapped to physical nodes.Then the shortest path algorithm was used to map the virtual link to a physical link.On this basis,the acceptance ratio of virtual network requests can be improved.Simulation experiment results show that acceptance rate of virtual network requests can be increased by 10% efficiently using the ant colony hybrid genetic algorithm,compared with existing mapping algorithms D-ViNE,RW-BFS and R-ViNE.Further more,proposed method can greatly improve the average utilization rate of nodes and links and the ratio of the mapping income to cost.  相似文献   

19.
网络功能虚拟化实现了网络功能与专属硬件平台的分离,虚拟网络功能(Virtual Network Function,VNF)通过动态组合形成服务功能链,实现同一硬件平台部署不同的功能服务。针对软件定义网络功能服务可靠性和物理网络资源效率问题,提出了一种基于主备份节点同步映射的VNF节点热备份机制。首先,选择满足节点资源约束的物理节点为主备份节点候选映射对;然后,选择满足带宽约束的最短物理链路为服务路径,实现节点与链路资源总开销的优化。实验结果表明,与传统的备份机制相比,该方法能够满足电信级高可靠性的服务需求,降低了VNF节点备份资源总开销,提高了服务请求的接受率和底层物理网络资源的利用率。  相似文献   

20.
虚拟网映射是网络虚拟化研究中亟待解决的问题,针对已有映射算法中存在的对于网络拓扑信息利用不足的现状,该文提出了基于资源区域聚集度的虚拟网映射算法(RCI-VNE)。在映射预处理阶段,根据局部拓扑信息和区域资源聚集度提出节点区域资源聚集评价算法。在节点映射阶段,提出一种基于节点区域资源聚集排名的2-近邻聚集映射算法,该算法将虚拟网节点集中映射到底层网络中可用资源丰富的区域,减小承载链路的长度。实验结果表明,该算法降低了虚拟网映射开销,且具有较高的虚拟网请求接受率和较低的平均执行时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号