首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide operating band is important for a pump to safely perform at maximum efficiency while saving energy. To widen the operating range, a multi-point optimization process based on numerical simulations in order to improve impeller performance of a centrifugal pump used in nuclear plant applications is proposed by this research. The Reynolds average Navier Stokes equations are utilized to perform the calculations. The meridional shape of the impeller was optimized based on the following four parameters; shroud arc radius, hub arc radius, shroud angle, and hub angle as the design variables. Efficiencies calculated under 0.6Q d, 1.0Q d and 1.62Q d were selected as the three optimized objectives. The Design of experiment method was applied to generate various impellers while 35 impellers were generated by the Latin hypercube sampling method. A Response surface function based on a second order function was applied to construct a mathematical relationship between the objectives and design variables. A multi-objective genetic algorithm was utilized to solve the response surface function to obtain the best optimized objectives as well as the best combination of design parameters. The results indicated that the pump performance predicted by numerical simulation was in agreement with the experimental performance. The optimized efficiencies based on the three operating conditions were increased by 3.9 %, 6.1 % and 2.6 %, respectively. In addition, the velocity distribution, pressure distribution, streamline and turbulence kinetic energy distribution of the optimized and reference impeller were compared and analyzed to illustrate the performance improvement.  相似文献   

2.
Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment(DOE) based on computational fluid dynamics. The impeller inlet diameter D_1, inlet incidence angle Δβ, and blade wrap angle φ are selected as the main impeller geometric parameters and the orthogonal experiment of L_9(3*3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D_1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63 m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.  相似文献   

3.
An optimization process for impellers was carried out based on numerical simulation, Latin hypercube sampling (LHS), surrogate model and Genetic algorithm (GA) to improve the efficiency of residual heat removal pump. The commercial software ANSYS CFX 14.5 was utilized to solve the Reynolds-averaged Navier-Stokes equations by using the Shear stress transport turbulence model. The impeller blade parameters, which contain the blade inlet incidence angle Δβ, blade wrap angle φ, and blade outlet angle β 2, were designed by random sample points according to the LHS method. The efficiency predicted under the design flow rate was selected as the objective function. The best combination of parameters was obtained by calculating the surrogate model with the GA. Meanwhile, the prediction accuracies of three surrogate models, namely, Response surface model (RSM), Kriging model, and Radial basis neural network (RBNN), were compared. Results showed that the calculated findings agree with the experimental performance results of the original pump. The RSF model predicted the highest efficiency, while the RBNN had the highest prediction accuracy. Compared with the simulated efficiency of the original pump, the optimization increased efficiency by 8.34% under the design point. Finally, the internal flow fields were analyzed to understand the mechanism of efficiency improvement. The optimization process, including the comparison of the surrogate models, can provide reference for the optimization design of other pumps.  相似文献   

4.
The effect of the blade loading distribution on head, radial force and pressure pulsation of a low specific-speed centrifugal pump with cylindrical impeller blades were investigated in the present study. Blade shapes were obtained by adopting the 1D inverse design method, impellers with different blade loading curves were obtained while the distribution of the blade loading was carefully tailored. Threedimensional URANS simulation method based on the Shear stress transport (SST) k-ω turbulence model was employed for the analyzation of flow patterns. Numerical results including the pressure distribution and velocity profile were validated by comparing with the available experimental data, and an acceptable agreement was obtained. Three typical parameters of the blade loading curve, including the location of the fore-loading point (mpre), location of the aft-loading point (mpost) and slope of the rectilinear segment (K), were analyzed. Results showed that the well-designed blade loading curve, such as the fore-loading impeller, can effectively reduce the pressure pulsation amplitude and the radial force. The significant effect of the variation of the aft-loading point on pump hydrodynamic performance was also investigated. Meanwhile, pressure and velocity distributions at different slopes of the blade loading curves show that the fore-loading impeller produces more uniform flow issuing from the impeller than that of the pump with aft-loading impeller, thus reduces the radial force and pressure pulsation of the pump.  相似文献   

5.
The diffuser of a reactor coolant pump was optimized using an orthogonal approach with numerical simulation to improve the pump hydraulic performance. Steady simulation was conducted by solving Reynolds-averaged Naiver-Stokes equations with the SST k-ω turbulence model using CFX code. The influence of the diffuser geometric parameters, namely, S, φ, α 4, b 4, δ 2, R t and R 4, on the pump performance were determined. L18 (37) orthogonal table was chosen for the optimization process. Best indicators were determined, and range analysis of energy losses, head, and efficiency at the rated condition was performed. Optimal parameters of the diffuser were S = 490 mm, φ = 36°, α 4 = 30°, b 4 = 200 mm, δ 2 = 20 mm, R t = 5 mm and R 4 = 565 mm. The final design was experimentally tested. Simulation results showed more remarkable performance than the experimental result. However, the numerical predictions and experimental results were consistent, validating the design procedure. Loading of the impeller and diffuser blades was analyzed to investigate the direct impact on the hydrodynamic flow field. The head was 14.74 m, efficiency was 79.6 %, and efficiency of the prototype pump was 83.3 % when the model pump functioned at the rated conditions. Optimization results showed that efficiency and head were improved at the design condition.  相似文献   

6.
Self-resonating pulsed waterjet (SRPW) is superior to plain waterjet in many ways and is being employed in numerous applications. To further improve the performance of SRPW, the optimal value of the preferred Strouhal number (Sd), which is used to determine the chamber length of a self-resonating nozzle, was experimentally studied at inlet pressures of 10 MPa and 20 MPa. The axial pressure oscillation peak and amplitude were used to evaluate the performance of SRPW, in order to find the optimum Sd value. Results show that Sd value determines the self-resonance behavior of an organ-pipe nozzle and greatly affects the intensity of the axial pressure oscillation. Under the experimental conditions, the optimum Sd values are 0.315 and 0.278 respectively, corresponding to inlet pressures of 10 MPa and 20 MPa. Compared with the default value of 0.3 obtained from air jet experiment, the optimum Sd value at inlet pressure of 10 MPa is a little larger and oppositely a bit smaller at inlet pressure of 20 MPa. Thus, if the inlet pressure is not considered, Sd value of 0.3 is reasonable for determining the chamber length of a self-resonating nozzle for generating effective SRPW.  相似文献   

7.

The vertical inline pump is a single-stage single-suction centrifugal pump with a curved inlet pipe before the impeller, which is widely used in where the constraint is installation space. In this paper, with the objective functions of efficiencies at 0.5Qd, 1.0Qd, and 1.5Qd, a multi-objective optimization on inlet pipe and impeller was proposed to broaden the efficient operating period of a vertical inline pump. Two 5th order Bézier curves were adopted to fit the shape of the mid curve of the inlet pipe and the trend of the blade angle of the impeller. Fourteen design variables were selected after the data-mining process. 300 sample cases were generated using Latin hypercube sampling (LHS), and they were solved by 3D RANS code to obtain the objective functions. The feed-forward artificial neural network with a hidden layer and an output layer was adopted to fit the two objective functions and the 14 design variables. The Pareto frontiers were generated for the three objectives using multi-objective particle swarm optimization (MOPSO), and three different configurations on the Pareto front are selected for detailed study by computational fluid dynamics (CFD). The results showed that the profile of the inlet pipe and the blade have a dramatic impact on the performance of the vertical inline pump. The Pareto frontiers reported that the performance under the overload condition usually keeps stable when the nominal efficiency is lower than 82 %, or the part-load efficiency is lower than 62 %, and it will decrease rapidly after that. After optimization, the improvement of efficiencies at the part-load condition and nominal condition of the picked case were 9.65 % and 7.95 %, respectively.

  相似文献   

8.
Two types of blade-tip rubbing due to the static misalignment of the bladed-disk center and casing center and casing deformation are simulated. By applying aerodynamic load in the blade lateral/flexural direction, vibration responses due to blade-casing rubbing are analyzed under the run-up process with constant angular acceleration and the steady-state process at 10000 rev/min. The effects of some parameters, such as the static misalignment e c, casing stiffness k c and casing deformation n p, on the system vibration responses are also illustrated by spectrum cascades, time-domain waveforms of displacement, normal rubbing forces, amplitude spectra and the impulse P in a single blade-casing rubbing period. The results show that blade-tip rubbing will cause amplitude amplification and harmonic resonance phenomena when the multiple frequencies (nf r) of rotational frequency (f r) coincide with the first three flexural dynamic frequencies of the blade (f n1, f n2 and f n3). For example, the displacement amplitudes at 3f r, 14f r and 38f r are large and the vibration is dominant near f n1. In addition, the casing deformation mainly excites the dominant Blade passing frequency (BPF), which is related to the casing deformation coefficient n p. By comparing these impulse values, for the selected parameters in this paper, the casing stiffness has a greater effect on impulse than the static misalignment and casing deformation coefficient. The impulse shows a linear increase trend with the increasing static misalignment, and it decreases under the large n p because the contact time decreases with the increase of n p.  相似文献   

9.
Turning by tools that are characterized by a linear or curved cutting blade but have no cutting tip is studied experimentally. The influence of the depth and cutting speed, the supply, and the cutter inclination on the components P z and P y of the cutting force is investigated in inverse and direct cutting.  相似文献   

10.
A method of rapid X-ray analysis is proposed. The content of the method is that the ratio I d/I i A is measured in two channels of a γ spectrometer, one of which is configured for the diffraction maximum of the determined phase (I d) and the other measures the intensity of the spectral line of secondary element A (I i A ), the atomic number of which is the same as that of the material of the X-ray tube anode. Results of the X-ray analysis of chromite and molybdenum are presented. The test rate was 7 min per test. The maximum deviation from the content of MoS2 was 0.4% in standard specimens with concentrations of 24–29% and that of Fe and Cr2O3 was 0.3% for concentrations of 14–19%.  相似文献   

11.
Flow instability in a centrifugal fan was studied using energy gradient theory. Numerical simulation was performed for the threedimensional turbulent flow field in a centrifugal fan. The flow is governed by the three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-ε turbulent model. The finite volume method was used to discretize the governing equations and the Semi-implicit method for pressure linked equation (SIMPLE) algorithm is employed to iterate the system of the equations. The interior flow field in the centrifugal fan and the distribution of the energy gradient function K are obtained at different flow rates. According to the energy gradient method, the area with larger value of K is the place where the flow loses stability easier. The results show that instability is easier to generate in the regions of impeller outlet and volute tongue. The air flow near the hub is more stable than that near the shroud. That is due to the influences of variations of the velocity and the inlet angle along the axial direction. With the decrease of the flow rate, instability zone in a blade channel moves to the impeller inlet from the outlet and the unstable regions in different channels develop in opposite direction to the rotation of impeller.  相似文献   

12.
In this paper, a multi-variable regression model, a back propagation neural network (BPNN) and a radial basis neural network (RBNN) have been utilized to correlate the cutting parameters and the performance while electro-discharge machining (EDM) of SiC/Al composites. The four cutting parameters are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo voltage (Sv); the performance measures are material remove rate (MRR) and surface roughness (Ra). By testing a large number of BPNN architectures, 4-5-1 and 4-7-1 have been found to be the optimal one for MRR and Ra, respectively; and it can predict them with 10.61 % overall mean prediction error. As for RBNN architectures, it can predict them with 12.77 % overall mean prediction error. The multivariable regression model yields an overall mean prediction error of 13.93 %. All of these three models have been used to study the effect of input parameters on the material remove rate and surface roughness, and finally to optimize them with genetic algorithm (GA) and desirability function. Then, an intelligent optimization system with graphical user interface (GUI) has been built based on these multi-optimization techniques, in which users can obtain the optimized cutting parameters under the desired surface roughness (Ra).  相似文献   

13.
Mechanical Quality factor(Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiAl), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.  相似文献   

14.
Compacted graphite iron (CGI) is considered as the ideal material to make modern fuel-efficient diesel engine. Due to the vermicular or worm-like graphite distributed among the ferrite/pearlite matrix, CGI behaves better physical and mechanical properties in comparison with gray cast iron (GCI) and spherical graphite spheroidal cast iron (SGI). However, these good properties bring about the machining challenges. So it is important to appropriately select cutting parameters to machine this material with economy and efficiency. The present study investigated the influence of cutting parameters, such as cutting speed V, feed rate f, and exit angle Ψ, on workpiece material removal volume Q and cutting burr height on the entrance side H1 and on the exit side H2 during high-speed milling of CGI by the coated carbide tools. On this basis, the relatively optimum high-speed cutting parameters were selected under the research condition. Cutting tool failure mechanism was also investigated with the aid of scanning electronic microscope (SEM) and energy-dispersive system (EDS) (SUPRA55, Germany) analysis. The results showed that Q, H1, H2, and the type of cutting burr on the exit side of the machined surface could be influenced by the cutting parameters. And the relatively optimum cutting parameters are V = 800 m/min, f = 0.25 mm/rev, and Ψ = 60°. Adhesive wear and thermal cracks which were perpendicular to the cutting edge were common wear mechanisms during the cutting process. However, with an increase in feed rate, mechanical cracks which were parallel to the cutting edge could be found on the flank face of the cutting tool.  相似文献   

15.
We performed numerical simulations to study the flow characteristic in a centrifugal pump based on the RANS equations and the RNG k-ε turbulent model. The flow field, including the front and back pump chambers, the impeller wear-ring, the impeller passage, the volute casing, the inlet section and outlet section was calculated to obtain accurate numerical results of fluid flow in a centrifugal pump. The flow characteristic was studied from the internal flow structure in pump chambers, the radial velocity at impeller outlet as well as the pressure inside of the pump, the circumferential velocity and the radial velocity in front pump chamber. The variation of flow parameters in internal flow versus flow rate in the centrifugal pump was analyzed. The results show that the overall performance of the pump is in good agreement with the experimental data. The simulation results show that the distribution of flow field in the front pump chamber is axial asymmetry. The energy dissipation at the impeller outlet is larger than other areas. The distribution of the circumferential velocity and that of radial velocity are similar along the axial direction in the front pump chamber, but the distribution of flow is different along the circumferential and the radial directions. It was also found that the vorticity is large at the impeller inlet compared with other areas.  相似文献   

16.
The present research focused on the optimization of machining parameters and their effects by dry-turning an incoloy 800H on the basis of Taguchi-based grey relational analysis. Surface roughness (Ra, Rq and Rz), cutting force (Fz), and cutting power (P) were minimized, whereas Material removal rate (MRR) was maximized. An L 27 orthogonal array was used in the experiments, which were conducted in a computerized and numerical-controlled turning machine. Cutting speed, feed rate, and cut depth were set as controllable machining variables, and analysis of variance was performed to determine the contribution of each variable. We then developed regression models, which ultimately conformed to investigational and predicted values. The combinational parameters for the multiperformance optimization were V = 35 m/min, f = 0.06 mm/rev and a = 1 mm, which altogether correspond to approximately 48.98 % of the improvement. The chip morphology of the incoloy 800H was also studied and reported.  相似文献   

17.
In this paper, we present a new approach to determinate cutting parameters in wire electrical discharge machining (WEDM), integrated artificial neuron network (ANN), and wolf pack algorithm based on the strategy of the leader (LWPA). The cutting parameters considered in this paper are pulse-on, current, water pressure, and cutting feed rate. Models of the effects of the four parameters on machining time (Tp), machining cost (Cp), and surface roughness (Ra) are mathematically constructed. An ANN-LWPA integration system with multiple fitness functions is proposed to solve the modelling problem. By using the proposed approach, this study demonstrates that Tp, Cp, and Ra can be estimated at 164.1852 min, 239.5442 RMB, and 1.0223 μm in single objective optimization, respectively. For example, as for Ra, integrated ANN-LWPA has optimized the Ra value by the reduction of 0.1337 μm (11.6 %), 0.3377 μm (24.8 %), and 0.105 μm (10.3 %) compared to experimental data, regression model, and ANN model, respectively. Consequently, the ANN-LWPA integration system boasts some advantages over decreasing the value of fitness functions by comparison with the experimental regression model, ANN model, and conventional LWPA result. Moreover, the proposed integration system can be also utilized to obtain multiple solutions by uniform design-based exploration. Therefore, in order to solve complex machining optimization problems, an intelligent process scheme could be integrated into the numeric control system of WEDM.  相似文献   

18.
Experimental data are presented for the field dependences of differential magnetic permeability μd (H0) of plastically deformed low-carbon steel-St3 samples both in an unloaded state and under tensile stresses. It is shown that applying tensile stresses drastically changes the shape of curves μd (H0 ) a fact that indicates compensation of internal residual compressive stresses in the samples by external tensile stresses. A new technique is proposed for the experimental determination of the critical fields of displacement of 90-degree domain boundaries based on dependences μd (H0 ). Residual compressive stresses in plastically deformed St3 steel are estimated.  相似文献   

19.
This paper focuses on the mechanical characterization of a bioceramic based on commercial alumina (Al2O3) mixed with synthesized tricalcium phosphate (β-TCP) and commercial titania powder (TiO2). The effect of β-TCP and TiO2 addition on the mechanical performance was investigated. After a sintering process at 1600 °C for 1 h, various mechanical properties of the samples have been studied, such as compressive strength, flexural strength, tensile strength, elastic modulus, and fracture toughness. The measurements of the elastic modulus (E) and the tensile strength (σ t ) were conducted using the modified Brazilian test while the compressive strength (σ c ) was determined through a compression test. Also, semi-circular bending (SCB) specimens were used to evaluate the flexural strength (σ f ) and the opening mode fracture toughness (K IC). From the main results, it was found that the best mechanical performance is obtained with the addition of 10 wt.% TCP and 5 wt.% TiO2. Alumina/10 wt.% tricalcium phosphate/5 wt.% titania composites displayed the highest values of mechanical properties and a good combination of compressive strength (σ c ?≈?352 MPa), flexural strength (σ f ?≈?98 MPa), tensile strength (σ t ?≈?86.65 MPa), and fracture toughness (K IC?≈?13 MPa m1/2).  相似文献   

20.
A method for controlled processing of the cathode surface in vacuum has been developed. The control is effected in a steady-state regime by monitoring the amplification factor of the electric-field strength at cathode microinhomogeneities. High-voltage pulses of nanosecond durations with amplitudes ensuring a breakdown delay time equal to the duration of the applied pulse, td = tp, are used to affect the surface. This method allows the surface quality to be substantially improved after application of a minimum number of pulses. The application of five pulses at tp = 10 ns with amplitudes ensuring the condition td = tp to stainless-steel electrodes results in a decrease in the field-amplification factor by a factor exceeding 5 (from 136 to 26) and in an increase in the emission area by more than four orders of magnitude (from 4.6 × 10?19 to 10?14 m2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号