首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysprosia-stabilized zirconia (DySZ) is a promising candidate to replace yttria-stabilized zirconia (YSZ) as a thermal barrier coating due to its lower inherent thermal conductivity. It is also suggested in studies that DySZ may show greater stability to high temperature phase changes compared to YSZ, possibly allowing for coatings with extended lifetimes. Separately, the impurity content of YSZ powders has been proven to influence high-temperature sintering behavior. By lowering the impurity oxides within the spray powder, a coating more resistant to sintering can be produced. This study presents both high purity and standard purity dysprosia and YSZ coatings and their performance after a long heat treatment. Coatings were produced using powder with the same morphology and grain size; only the dopant and impurity content were varied. Samples have been heat treated for exposure times up to 400 h at a temperature of 1150 °C. Samples were measured for thermal conductivity to plot the evolution of coating thermal properties with respect to exposure time. Thermal conductivity has been compared to microstructure analysis and porosity measurement to track structural changes. Phase analysis utilizing x-ray diffraction was used to determine differences in phase degradation of the coatings after heat treatment.  相似文献   

2.
Plasma sprayed ceramic coatings are widely used for thermal barrier coating applications. Commercially available mullite powder particles and a mixture of mechanically alloyed alumina and silica powder particles were used to deposit mullite ceramic coatings by plasma spraying. The coatings were deposited at three different substrate temperatures (room temperature, 300?°C, and 600?°C) on stainless steel substrates. Microstructure and morphology of both powder particles as well as coatings were investigated by using scanning electron microscopy. Phase formation and degree of crystallization of coatings were analyzed by x-ray diffraction. Differential thermal analysis (DTA) was used to study phase transformations in the coatings. Results indicated that the porosity level in the coatings deposited using mullite initial powder particles were lower than those deposited using the mixed initial powder particles. The degree of crystallization of the coatings deposited using the mixed powder particles was higher than that deposited using mullite powder particles at substrate temperatures of 25 and 300?°C. DTA curves of the coatings deposited using the mixed powders showed some transformation of the retained amorphous phase into mullite and alumina. The degree of crystallization of the as sprayed coatings using the mixed powder particles was significantly increased after post deposition heat treatments. The results indicated that the mechanically alloyed mixed powder can be used as initial powder particles for deposition of mullite coatings instead of using mullite powders.  相似文献   

3.
等离子体喷涂技术在面向等离子体材料钨涂层的制备中占据主导地位,本实验采用CuMo/MoW作为涂层的中间过渡层,分别以结晶钨粉和羰基钨粉为原料,用大气等离子体喷涂技术在CuCrZr合金基体(110 mm×130mm)上制备了3-4 mm厚的3种钨涂层.对钨涂层微观组织、力学性能和热学性能研究表明,羰基钨粉制备的钨涂层的综合性能优于结晶钨粉,且薄涂层的结合强度优于厚涂层.优化喷涂工艺后,金相法测得钨涂层孔隙率<2%,涂层的结合强度最大值为10 MPa,EDS测得氧含量为6%左右,纯钨层热导率最大值为12.52 W/(m.K),涂层氧含量过高导致涂层热导率显著降低.研究表明采用大气等离子体喷涂技术在铜合金上制备3~4mm厚的钨涂层是可行的,该技术可为下一步低成本、高性能厚钨涂层的制备奠定基础.  相似文献   

4.
A variety of yttria-stabilized zirconia (YSZ) coatings have been attained by plasma spray physical vapor deposition (PS-PVD) with fine YSZ powders at high power. The coating structures were found to change significantly with the powder feeding rates but less with the substrate temperature and the rate of the substrate rotation, and a porous feather like structure was attained at 500 Torr (666.6 millibar) and a rate of >200 μm/min. Such a coating produces porosity reaching >50%, thermal conductivity as small as 0.5 W/mK and lower infra-red transmittance compared to the sprayed splat coating with identical thickness.  相似文献   

5.
In the present work, Yb2Si2O7 powder was synthesized by solid-state reaction using Yb2O3 and SiO2 powders as starting materials. Atmospheric plasma spray technique was applied to fabricate Yb2Si2O7 coating. The phase composition and microstructure of the coating were characterized. The density, open porosity and Vickers hardness of the coating were investigated. Its thermal stability was evaluated by thermogravimetry and differential thermal analysis (TG-DTA). The thermal diffusivity and thermal conductivity of the coating were measured. The results showed that the as-sprayed coating was mainly composed of crystalline Yb2Si2O7 with amorphous phase. The coating had a dense structure containing defects, such as pores, interfaces and microcracks. The TG-DTA results showed that there was almost no mass change from room temperature to 1200 °C, while a sharp exothermic peak appeared at around 1038 °C in DTA curve, which indicated that the amorphous phase crystallized. The thermal conductivity of the coating decreased with rise in temperature up to 600 °C and then followed by an increase at higher temperatures. The minimum value of the thermal conductivity of the Yb2Si2O7 coating was about 0.68 W/(m K).  相似文献   

6.
Strontium zirconate (SrZrO3) thermal barrier coatings were deposited by solution precursor plasma spray (SPPS) using an aqueous precursor solution. The phase transition of the SrZrO3 coating and the influence of the aging time at 1400 °C on the microstructure, phase stability, thermal expansion coefficient, and thermal conductivity of the coating were investigated. The unique features of SPPS coatings, such as interpass boundary (IPB) structures, nano- and micrometer porosity, and through-thickness vertical cracks, were clearly observed evidently in the coatings. The vertical cracks of the coatings remained substantially unchanged while the IPB structures gradually diminished with prolonged heat treatment time. t-ZrO2 developed in the coatings transformed completely to m-ZrO2 phase after heat treatment for 100 h. Meanwhile, the SrZrO3 phase in the coatings exhibited good phase stability upon heat treatment. Three phase transitions in the SrZrO3 coatings were revealed by thermal expansion measurements. The thermal conductivity of the as-sprayed SrZrO3 coating was ~1.25 W m?1 K?1 at 1000 °C and remained stable after heat treatment at 1400 °C for 360 h, revealing good sintering resistance.  相似文献   

7.
The solution precursor plasma spray process, in which a solution of metal salts is axially injected into an induction thermal plasma, is suitable for deposition of nanostructured environmental barrier coatings. The effects of main processing parameters, namely the solution precursor concentration, spraying distance, reactor pressure, and atomization gas flow rate, have been analyzed using D-optimal design of experiments regarding the deposition rate and coating porosity responses. Among these four parameters, the solution precursor concentration had the greatest influent on the coating structure, followed by the spraying distance and reactor pressure, and finally the atomization gas flow rate with a small contribution. It is pointed out that the species that impact on the substrate are agglomerates of nanoparticles. The equivalent thermal conductivity of selected coatings was computed from experimental temperature evolution curves obtained by laser flash thermal diffusivity analysis, using two methods: a multilayer finite-element model with optimization, and a multilayer thermal diffusion model. The results of the two models agree, with coatings exhibiting low thermal conductivity between 0.7 and 1 W/(m K) at 800 °C.  相似文献   

8.
In this study the effects of adding yttria-stabilized zirconia (YSZ) reinforcement by mechanical milling method on the oxidation resistance of CoNiCrAlY coatings were investigated. For this purpose 0, 5, 10 and 15% YSZ were mixed with the commercial CoNiCrAlY powder and mechanically milled for 24 h in argon atmosphere. The high-velocity oxygen-fuel method was used for deposition of composite and commercial powders on Inconel 617 substrate. Both commercial and nano-structured coatings were oxidized at 1000 °C for 100 h. Scanning electron microscopy together with energy-dispersive spectroscopy and X-ray diffraction analysis were used for analyzing the oxide scales formed on the coatings surface after oxidation process. The results showed that the porosity of nano-structured coatings was higher than that of the commercial coating, which was related to an undesirable morphology of the feedstock powders. The relatively high porosity of the nano-structured coatings caused the diffusion rate of oxygen into the coatings to be accelerated. On the other hand, a high Al supply due to a large amount of grain boundaries in nano-structured coatings facilitated the formation of an Al2O3 layer on coating’s surface. The undesirable oxidation of splats in nano-structured coatings during spraying resulted in an increased oxidation rate of the coatings.  相似文献   

9.
The application of fine powders in thermal spray technology represents an innovative approach to apply dense and smooth near-net shape coatings on tools with complex geometry. However, this aim can only be achieved as long as the influence of the handling parameters of the spray process, such as the spray angle, is sufficiently understood. In this study, the influence of the spray angle on the deposition rate as well as on the coating properties (microhardness, roughness, and porosity) of HVOF-sprayed, fine-structured coatings are investigated. A fine, agglomerated, and sintered WC-12Co powder (agglomerate size: 2-10 μm, WC-particle Fisher sub-sieve size = 400 nm) was used as feedstock material. It has been shown that HVOF spraying of fine powders is less susceptible to an alteration of the spray angle than most other thermal spray processes such as plasma- or arc-spraying. The reduction of the spray angle results in a decrease in the deposition rate, while no significant degradation of the coating properties is found up to 30°. However, at spray angles below 30° the coating strength is negatively affected by the formation of pores and cracks.  相似文献   

10.
The thermal conductivities of as-sprayed yttria-stabilized zirconia thermal barrier coating prepared by atmospheric plasma spraying at different temperatures are investigated based on quantitative microstructural analysis. Multiple linear regression is used to develop quantitative models which describe the relationship between multiple elements such as porosity, grain boundary density, monoclinic phase content, temperature and thermal conductivity. Results reveal that the thermal conductivity of the coating is mainly determined by the porosity and grain boundary density below 300 °C and by the monoclinic phase content above 800 °C. Furthermore, based on the significance testing analysis, the confidence interval under a confidence level of 95% at different temperatures enables researchers to predict the thermal conductivity based on microstructural information.  相似文献   

11.
Molybdenum disilicide (MoSi2) coatings were deposited on carbon steel by air plasma spraying technology with different feedstock powder sizes (i.e., powder A: ?15 + 2.5 μm, powder B: ?30 + 15 μm, powder C: ?54 + 30 μm, powder D: ?74 + 54 μm and powder E: ?106 + 74 μm). Phase composition and microstructure of coatings were characterized by x-ray diffraction (XRD) and scanning electron microscope. The bonding strength and microhardness of coatings were also evaluated. The XRD results show that there exists mutual transformation between T-MoSi2 and H-MoSi2 phase and part of Mo-rich phases are formed because of oxidization during the spraying process. With the increase of spraying powders size, the content of Mo-rich phases (Mo or Mo5Si3) and molybdenum oxide (MoO3) in coatings decreases, and that of disilicide-rich phase (MoSi2) in coatings increases. The oxidation degree of MoSi2 particle gradually decreases during the spraying process with the increase of spraying powders size. The MoSi2 is the main phase of the as-sprayed coatings when the spraying powders size is beyond 30 μm. With the increase of spraying powders size, the porosity of the as-sprayed coating increases, and the bonding strength of the coating gradually decreases. The hardness of coatings first increases and then decreases with the increase of spraying powders size.  相似文献   

12.
In the present work, metallic composite coatings of commercial purity Ti plus Ti6Al4V were produced by cold spraying to explore the effect of mixing on porosity and mechanical properties of the coatings. The coatings were deposited using N2 gas at 800 °C and 4 MPa pressure on 1020 steel substrate. Coating characteristics were studied by examining porosity percentages and Vickers’s hardness. The microstructure was examined using optical and electron microscopy techniques. It was observed that mixing metal powders can lead to improvements in cold sprayability, specifically decreases in the porosity of the ‘matrix’ powder. It is shown that a critical addition can significantly influence porosity, but above this critical level, there is a little change in porosity. Hardness differences between the two powders are considered to be the first-order influence, but differences in particle sizes and morphology may also be contributing factors.  相似文献   

13.
Suspension plasma-sprayed coatings are produced using fine-grained feedstock. This allows to control the porosity and to achieve low thermal conductivity which makes the coatings attractive as topcoats in thermal barrier coatings (TBCs). Used in gas turbine applications, TBCs are exposed to high temperature exhaust gases which lead to microstructure alterations. In order to obtain coatings with optimized thermomechanical properties, microstructure alterations like closing of pores and opening of cracks have to be taken into account. Hence, in this study, TBC topcoats consisting of 4 mol.% yttria-stabilized zirconia were heat-treated in air at 1150 °C and thereafter the coating porosity was investigated using image analysis (IA) and nuclear magnetic resonance (NMR) cryoporometry. Both IA and NMR cryoporometry showed that the porosity changed as a result of the heat treatment for all investigated coatings. In fact, both techniques showed that the fine porosity decreased as a result of the heat treatment, while IA also showed an increase in the coarse porosity. When studying the coatings using scanning electron microscopy, it was noticed that finer pores and cracks disappeared and larger pores grew slightly and achieved a more distinct shape as the material seemed to become more compact.  相似文献   

14.
Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m?1 K?1 for EB-PVD YSZ coatings to about 0.7 W m?1 K?1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ′-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.  相似文献   

15.
通过固相反应法合成了Gd2Zr2O7-SrZrO3 (GZSZ,Gd2Zr2O7:SrZrO3=7:3)复合陶瓷粉末,并采用喷雾造粒法和大气等离子喷涂法分别制备了适合等离子喷涂使用的相应喷涂粉末及涂层。使用X射线衍射、扫描电子显微镜对粉末和涂层的相组成、显微结构进行分析。借助激光热导仪、高温热膨胀仪对涂层的热扩散系数和热膨胀系数、烧结系数进行了表征。结果表明,制备的GZSZ复合陶瓷粉末和涂层都由Gd2Zr2O7和SrZrO3两相组成,粉末中的Gd2Zr2O7为烧绿石结构,而涂层中的Gd2Zr2O7为萤石结构,SrZrO3都为钙钛矿结构。制备态GZSZ涂层的孔隙率为~14%。GZSZ涂层1400℃热处理5 h后的热膨胀系数为(9.8~11.2)×10-6 K-1。制备态GZSZ涂层的热导率为~0.8 W·m-1·K-1,与制备态SrZrO3涂层的热导率~1.0 W·m-1·K-1相比降低~20%。1400℃热处理360 h后GZSZ涂层的热导率增加到~1.5 W·m-1.K-1。综上表明,GZSZ涂层是一种很有前景的复合陶瓷热障涂层材料。  相似文献   

16.
Ti-Al-based intermetallics are promising candidates as coating materials for thermal protection systems in aerospace vehicles; they can operate just below the temperatures where ceramics are commonly used, and their main advantage is the fact that they are lighter than most other alloys, such as MCrAlY. Therefore, Ti-Al-Si alloy coatings with five compositions were manufactured by spraying pure Ti and Al-12 wt.% Si powders using warm spray process. Two-stage hot pressing at 600 and 1000 °C was applied to the deposits in order to obtain titanium aluminide intermetallic phases. The microstructure, chemical composition, and phase composition of the as-deposited and hot-pressed coatings were investigated using SEM, EDS, and XRD. Applying of hot pressing enabled the formation of dense coatings with porosity around 0.5% and hard Ti5(Si,Al)3 silicide precipitates. It was found that the Ti5(Si,Al)3 silicides existed in two types of morphologies, i.e., as large particles connected together and as small isolated particles dispersed in the matrix. Furthermore, the produced coatings exhibited good isothermal and cyclic oxidation resistance at a temperature of 750 °C for 100 h.  相似文献   

17.
Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.  相似文献   

18.
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.  相似文献   

19.
The primary mullitized andalusite powders were spray-dried and heat-treated to improve sprayable capability. Then, mullite coating was deposited by atmospheric plasma spraying and heat treatment was contributed to recrystallization of the amorphous phase present in the as-sprayed mullite coating. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phase composition of mullite coating. Meanwhile, the phase transition temperature, enthalpy, and specific heat capacity of as-sprayed coatings as well as recrystallized mullite coatings were determined by means of differential scanning calorimetry (DSC). Moreover, tribological properties of as-sprayed coating were investigated by SRV-IV friction and wear tester from 200 to 800 °C. It has been found that the as-sprayed coating possesses good thermal stability. DSC analysis reveals that recrystallization of the glassy phase present in the mullite coating occurs at about 980 °C. The friction coefficient of mullite coating was gradually increased from 0.82 at 200 °C to the highest value of 1.12 at 800 °C, while wear rates of the coating were at the order of 10?5 mm3/Nm. The as-sprayed coating suffered the most severe wear at 800 °C. The observed wear mechanisms were mainly abrasive wear, brittle fracture, and pulling-out of splats.  相似文献   

20.
Life and thermal properties of plasma sprayed TBCs - widely used in gas turbine engines - are closely related to the microstructure of the ceramic top coating. Especially, the thermal behaviour of this coating is induced by the void shapes and networks which are in turn determined by both the spraying conditions and the feedstock material.A specific hollow yttria partially stabilised zirconia powder was produced in a one-step process by spray drying and an experimental statistical design study was conducted to investigate the influence of spraying variables (primary and secondary gas flow rates, arc current, spraying distance, spraying angle and traverse speed) on structure and properties of resulting plasma sprayed coatings. The coatings were characterized with respect to deposition efficiency, roughness, porosity and thermal conductivity. A reduction of 25% of the thermal conductivity was achieved by improving the spray and powder parameters. A quantitative characterization of the porous structure using image analysis of polished cross-sections was implemented. The parameters that have relevant influence on the coating porous structure were identified, and their relative importance was determined. An attempt was made to identify morphological criteria of the porous network (coarse/fine porosity ratio, cracks total length, cracks orientation) correlating with the thermal conductivity values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号